清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Integrating deep learning techniques for personalized learning pathways in higher education

学习分析 个性化学习 计算机科学 分析 深度学习 人工智能 高等教育 捆绑 学生参与度 大数据 数据科学 教学方法 数学教育 开放式学习 心理学 合作学习 法学 操作系统 政治学
作者
Fawad Naseer,Muhammad Nasir Khan,Muhammad Tahir,Abdullah Addas,Syed Muhammad Haider Aejaz
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (11): e32628-e32628 被引量:22
标识
DOI:10.1016/j.heliyon.2024.e32628
摘要

The rapid improvement of artificial intelligence (AI) in the educational domain has opened new possibilities for enhancing the learning experiences for students. This research discusses the critical need for personalized education in higher education by integrating deep learning (DL) techniques to create customized learning pathways for students. This research intends to bridge the gap between constant educational content and dynamic student needs. This research presents an AI-driven adaptive learning platform implemented across four different courses and 300 students at a university in Faisalabad-Pakistan. A controlled experiment compares student outcomes between those using the AI platform and those undergoing traditional instruction. Quantitative results demonstrate a 25 % improvement in grades, test scores, and engagement for the AI group, with a statistical significance of a p-value of 0.00045. Qualitative feedback highlights enhanced experiences attributed to personalized pathways. The DL analysis of student performance data highlights key parameters, including enhanced learning outcomes and engagement metrices over time. Surveys reveal increased satisfaction compared to one-size-fits-all content. Unlike prior AI research lacking rigorous validation, our methodology and significant results deliver a concrete framework for institutions to implement personalized, AI-driven education at scale. This data-driven approach builds on previous attempts by tying adaptations to actual student needs, yielding measurable improvements in key outcomes. Overall, this work empirically validates that AI platforms leveraging robust analytics to provide customized and adaptive learning can significantly enhance student academic performance, engagement, and satisfaction compared to traditional approaches. These findings have insightful consequences for the future of higher education. The research contributes to the growing demand for AI in education research and provides a practical framework for institutions seeking to implement more adaptive and student-centric teaching methodologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿狸完成签到 ,获得积分10
20秒前
elisa828完成签到,获得积分10
29秒前
33秒前
Hua完成签到,获得积分10
35秒前
38秒前
赘婿应助调皮帆布鞋采纳,获得10
38秒前
43秒前
鹏程万里完成签到,获得积分10
45秒前
49秒前
Lucas应助科研通管家采纳,获得10
53秒前
烟花应助科研通管家采纳,获得10
54秒前
开心每一天完成签到 ,获得积分10
1分钟前
natsu401完成签到 ,获得积分10
1分钟前
jlwang完成签到,获得积分10
1分钟前
脑洞疼应助紧张的海露采纳,获得10
1分钟前
1分钟前
wufan发布了新的文献求助10
1分钟前
1分钟前
李爱国应助wufan采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
ukz37752发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
wanci应助ukz37752采纳,获得10
2分钟前
小奋青完成签到 ,获得积分10
2分钟前
poki完成签到 ,获得积分10
3分钟前
qq完成签到 ,获得积分10
3分钟前
隐形曼青应助Jes采纳,获得10
3分钟前
3分钟前
jiyuehan666发布了新的文献求助10
3分钟前
Jes发布了新的文献求助10
3分钟前
3分钟前
ukz37752发布了新的文献求助10
3分钟前
ding应助ukz37752采纳,获得10
4分钟前
joker完成签到 ,获得积分10
4分钟前
充电宝应助LZQ采纳,获得10
4分钟前
丹妮完成签到 ,获得积分10
4分钟前
慕青应助紧张的海露采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843282
求助须知:如何正确求助?哪些是违规求助? 3385522
关于积分的说明 10540738
捐赠科研通 3106138
什么是DOI,文献DOI怎么找? 1710890
邀请新用户注册赠送积分活动 823818
科研通“疑难数据库(出版商)”最低求助积分说明 774308