Civil Aviation Passenger Traffic Forecasting: Application and Comparative Study of the Seasonal Autoregressive Integrated Moving Average Model and Backpropagation Neural Network

反向传播 人工神经网络 自回归积分移动平均 自回归模型 航空 民用航空 计算机科学 计量经济学 人工智能 工程类 时间序列 机器学习 经济 航空航天工程
作者
Weifan Gu,Baohua Guo,Zhezhe Zhang,He Lu
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:16 (10): 4110-4110 被引量:1
标识
DOI:10.3390/su16104110
摘要

With the rapid development of China’s aviation industry, the accurate prediction of civil aviation passenger volume is crucial to the sustainable development of the industry. However, the current prediction of civil aviation passenger traffic has not yet reached the ideal accuracy, so it is particularly important to improve the accuracy of prediction. This paper explores and compares the effectiveness of the backpropagation (BP) neural network model and the SARIMA model in predicting civil aviation passenger traffic. Firstly, this study utilizes data from 2006 to 2019, applies these two models separately to forecast civil aviation passenger traffic in 2019, and combines the two models to forecast the same period. Through comparing the mean relative error (MRE), mean square error (MSE), and root mean square error (RMSE), the prediction accuracies of the two single models and the combined model are evaluated, and the best prediction method is determined. Subsequently, using the data from 2006 to 2019, the optimal method is applied to forecast the civil aviation passenger traffic from 2020 to 2023. Finally, this paper compares the epidemic’s impact on civil aviation passenger traffic with the actual data. This paper improves the prediction accuracy of civil aviation passenger volume, and the research results have practical significance for understanding and evaluating the impact of the epidemic on the aviation industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Akim应助咕咕咕采纳,获得10
2秒前
123完成签到,获得积分10
2秒前
执着又蓝完成签到,获得积分20
3秒前
潘文博完成签到,获得积分10
4秒前
潘文博发布了新的文献求助10
7秒前
君君应助lj采纳,获得10
10秒前
搜集达人应助如意草丛采纳,获得10
10秒前
四个和尚完成签到,获得积分10
12秒前
研友_VZG7GZ应助耐凡不哭采纳,获得10
13秒前
韩夏菲完成签到,获得积分10
13秒前
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
14秒前
15秒前
15秒前
起起发布了新的文献求助10
15秒前
18秒前
beibeibaobao发布了新的文献求助10
18秒前
勤H完成签到 ,获得积分10
19秒前
博修发布了新的文献求助10
19秒前
pluto应助韩夏菲采纳,获得10
21秒前
21秒前
科研通AI5应助执着又蓝采纳,获得10
22秒前
Adeline发布了新的文献求助30
22秒前
YYL完成签到,获得积分10
22秒前
25秒前
28秒前
今天要喝椰汁完成签到,获得积分10
29秒前
Abelsci完成签到,获得积分0
30秒前
爱笑的岩完成签到,获得积分10
30秒前
乐乐应助ffang采纳,获得10
31秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799266
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322458
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680310
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451