电催化剂
过电位
材料科学
析氧
催化作用
密度泛函理论
氧化物
分解水
电解
阳极
贵金属
电化学能量转换
无机化学
吉布斯自由能
化学工程
吸附
计算化学
电化学
热力学
化学
电极
电解质
物理化学
冶金
光催化
生物化学
物理
工程类
作者
Yongfeng Lun,Haixin Chen,Kun Wang,Shuqin Song,Yi Wang
标识
DOI:10.1002/aenm.202405657
摘要
Abstract Ensuring high catalytic activity and durability remains a significant challenge in the development of electrocatalysts toward oxygen evolution reaction (OER) in proton exchange membrane water electrolyzer (PEMWE). This study introduces a new research paradigm through high‐throughput density functional theory (DFT) calculations to screen efficient acidic OER electrocatalysts, guided by the principle of minimizing thermodynamic free energy and optimizing the adsorption energies of OER intermediates. The incorporation of Ir increases the formation energy of oxygen vacancies and suppresses the lattice oxygen mechanism (LOM) of the RuO 2 , thereby enhancing its stability. In addition, Mg modulates the electronic structure of Ru and optimizes the adsorption energies of OER intermediates, thus improving the OER activity of the RuO 2 . Electrochemical results reveal that Mg 0.23 Ir 0.13 Ru 0.64 O 2 exhibits a low overpotential of 191 mV at 10 mA cm −2 and superior mass activity of 338.6 A g noble‐metal −1 at 1.46 V. The PEMWE with Mg 0.23 Ir 0.13 Ru 0.64 O 2 as anode catalyst achieves a current density of 1.0 A cm −2 at a low electrolysis voltage of 1.81 V and steadily operates at 0.5 A cm −2 for 42 h with a decay of only 909.5 µV h −1 . This work offers a new paradigm for the rational design of highly active and robust acidic OER electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI