Embracing the changes and challenges with modern early drug discovery

药物发现 药品 数据科学 计算生物学 医学 计算机科学 生物 生物信息学 药理学
作者
Vinay Kumar,Kunal Roy
出处
期刊:Expert Opinion on Drug Discovery [Taylor & Francis]
标识
DOI:10.1080/17460441.2025.2481259
摘要

The landscape of early drug discovery is rapidly evolving, fueled by significant advancements in artificial intelligence (AI) and machine learning (ML), which are transforming the way drugs are discovered. As traditional drug discovery faces growing challenges in terms of time, cost, and efficacy, there is a pressing need to integrate these emerging technologies to enhance the discovery process. In this perspective, the authors explore the role of AI and ML in modern early drug discovery and discuss their application in drug target identification, compound screening, and biomarker discovery. This article is based on a thorough literature search using the PubMed database to identify relevant studies that highlight the use of AI/ML models in computational chemistry, systems biology, and data-driven approaches to drug development. Emphasis is placed on how these technologies address key challenges such as data integration, predictive performance, and cost-efficiency in the drug discovery pipeline. AI and ML have the potential to revolutionize early drug discovery by improving the accuracy and speed of identifying viable drug candidates. However, successful integration of these technologies requires overcoming challenges related to data quality, model interpretability, and the need for interdisciplinary collaboration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
David完成签到,获得积分10
刚刚
1秒前
1秒前
蔡蝶蝶发布了新的文献求助100
1秒前
小陈同学发布了新的文献求助10
1秒前
1秒前
lulu完成签到,获得积分10
1秒前
天天向上发布了新的文献求助10
2秒前
科研通AI5应助辉辉采纳,获得10
3秒前
钰宁发布了新的文献求助10
3秒前
闲听花落完成签到,获得积分10
3秒前
科研通AI5应助薛敬鑫采纳,获得10
3秒前
科研通AI5应助saara采纳,获得10
3秒前
Leon完成签到,获得积分0
4秒前
筱甜完成签到,获得积分10
4秒前
FireNow完成签到,获得积分10
4秒前
5秒前
yuguofang发布了新的文献求助10
5秒前
5秒前
英姑应助Anderson123采纳,获得10
5秒前
kk星完成签到,获得积分10
6秒前
6秒前
鸢尾发布了新的文献求助10
7秒前
8秒前
科研通AI2S应助闲听花落采纳,获得10
9秒前
李常轩发布了新的文献求助10
9秒前
9秒前
李健应助conghuiqu采纳,获得30
9秒前
9秒前
pangguanzhe发布了新的文献求助10
9秒前
10秒前
晴栀发布了新的文献求助10
10秒前
悲惨雪糕W发布了新的文献求助10
10秒前
游大侠完成签到,获得积分10
11秒前
NexusExplorer应助dxxx007采纳,获得10
11秒前
无花果应助yxy采纳,获得10
11秒前
12秒前
坚定龙猫完成签到,获得积分10
12秒前
平常芷波完成签到,获得积分10
12秒前
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808655
求助须知:如何正确求助?哪些是违规求助? 3353413
关于积分的说明 10365062
捐赠科研通 3069602
什么是DOI,文献DOI怎么找? 1685698
邀请新用户注册赠送积分活动 810656
科研通“疑难数据库(出版商)”最低求助积分说明 766240