Detecting emergencies in patient portal messages using large language models and knowledge graph-based retrieval-augmented generation

计算机科学 知识图 图形 语言模型 自然语言处理 情报检索 人工智能 理论计算机科学
作者
Siru Liu,Aileen P Wright,Allison B. McCoy,Sean S Huang,Bryan D. Steitz,Adam Wright
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
标识
DOI:10.1093/jamia/ocaf059
摘要

This study aims to develop and evaluate an approach using large language models (LLMs) and a knowledge graph to triage patient messages that need emergency care. The goal is to notify patients when their messages indicate an emergency, guiding them to seek immediate help rather than using the patient portal, to improve patient safety. We selected 1020 messages sent to Vanderbilt University Medical Center providers between January 1, 2022 and March 7, 2023. We developed four models to triage these messages for emergencies: (1) Prompt-Only: the patient message was input with a prompt directly into the LLM; (2) Naïve Retrieval Augmented Generation (RAG): provided retrieved information as context to the LLM; (3) RAG from Knowledge Graph with Local Search: a knowledge graph was used to retrieve locally relevant information based on semantic similarities; (4) RAG from Knowledge Graph with Global Search: a knowledge graph was used to retrieve globally relevant information through hierarchical community detection. The knowledge base was a triage book covering 225 protocols. The RAG from Knowledge Graph model with global search outperformed other models, achieving an accuracy of 0.99, a sensitivity of 0.98, and a specificity of 0.99. It demonstrated significant improvements in triaging emergency messages compared to LLM without RAG and naïve RAG. The traditional LLM without any retrieval mechanism underperformed compared to models with RAG, which aligns with the expected benefits of augmenting LLMs with domain-specific knowledge sources. Our results suggest that providing external knowledge, especially in a structured manner and in community summaries, can improve LLM performance in triaging patient portal messages. LLMs can effectively assist in triaging emergency patient messages after integrating with a knowledge graph about a nurse triage book. Future research should focus on expanding the knowledge graph and deploying the system to evaluate its impact on patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
平淡夜绿发布了新的文献求助10
4秒前
烟花应助你听风在吹采纳,获得10
5秒前
7秒前
7秒前
7秒前
牧鱼完成签到,获得积分10
8秒前
8秒前
10秒前
无风发布了新的文献求助10
11秒前
暖暖发布了新的文献求助10
12秒前
wangayting发布了新的文献求助10
13秒前
13秒前
左丘映易完成签到,获得积分0
15秒前
核桃酥发布了新的文献求助10
15秒前
xiao_niu完成签到,获得积分10
16秒前
想不想发布了新的文献求助10
17秒前
18秒前
科研通AI5应助Warming采纳,获得10
18秒前
毅青6796完成签到,获得积分10
19秒前
Fqdgest完成签到,获得积分10
19秒前
qiao应助lizhiqian2024采纳,获得10
19秒前
情怀应助lizhiqian2024采纳,获得10
19秒前
小丫头发布了新的文献求助10
20秒前
lz完成签到,获得积分10
20秒前
隐形曼青应助柚哦采纳,获得10
21秒前
默默惋清完成签到,获得积分10
21秒前
HEIHEI完成签到,获得积分20
21秒前
21秒前
22秒前
22秒前
athruncx发布了新的文献求助10
22秒前
pcr发布了新的文献求助50
23秒前
Sulin完成签到,获得积分10
24秒前
CipherSage应助科研通管家采纳,获得10
24秒前
Lucas应助科研通管家采纳,获得10
24秒前
田様应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
MM11111应助科研通管家采纳,获得10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781731
求助须知:如何正确求助?哪些是违规求助? 3327303
关于积分的说明 10230369
捐赠科研通 3042188
什么是DOI,文献DOI怎么找? 1669800
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792