Accelerated discovery of high-performance small-molecule hole transport materials via molecular splicing, high-throughput screening, and machine learning

吞吐量 高通量筛选 RNA剪接 小分子 计算机科学 纳米技术 计算生物学 化学 材料科学 生物 生物信息学 基因 电信 生物化学 核糖核酸 无线
作者
Jiansen Wen,Shu-Wen Yang,Linqin Jiang,Yudong Shi,Zhihan Huang,Ping Li,Hao Xiong,Ze Yu,Xushan Zhao,Bo Xu,Bo Wu,Baisheng Sa,Yu Qiu
出处
期刊:Journal of materials informatics [OAE Publishing Inc.]
卷期号:5 (3)
标识
DOI:10.20517/jmi.2024.102
摘要

As the most representative and widely utilized hole transport material (HTM), spiro-OMeTAD encounters challenges including limited hole mobility, high production costs, and demanding synthesis conditions. These issues have a notable impact on the overall performance of perovskite solar cells (PSCs) based on spiro-OMeTAD and hinder its large-scale commercial application. Consequently, there exists a strong demand for high-throughput computational design of novel small-molecule HTMs (SM-HTMs) that are cost-effective, easy to synthesize, and offer excellent performance. In this study, a systematic and iterative design and development process for SM-HTMs is proposed, aiming to accelerate the discovery and application of high-performance SM-HTMs. A custom-developed molecular splicing algorithm (MSA) generated a sample space of 200,000 intermediate molecules, culminating in the creation of a comprehensive database of over 7,000 potential SM-HTM candidates. In total, six promising HTM candidates were identified through MSA, density functional theory calculations and high-throughput screening. Furthermore, three machine learning algorithms, namely random forest, gradient boosting decision tree, and extreme gradient boosting (XGBoost), were employed to construct predictive models for key material properties, including hole recombination energy, solvation free energy, maximum absorption wavelength, and hydrophobicity. Among these, the XGBoost-based model demonstrated the best overall performance. The MSA methodology combining comprehensive SM-HTM database and performance prediction models, as introduced in this study, offers a powerful and universal toolkit for the design and optimization of next-generation SM-HTMs, thereby paving the way for future advancements of PSCs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mouxq发布了新的文献求助10
刚刚
小二郎应助科研通管家采纳,获得10
1秒前
1秒前
情怀应助lulu采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得20
3秒前
Akim应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
wch071完成签到,获得积分10
5秒前
yy完成签到 ,获得积分10
5秒前
Y_Z发布了新的文献求助30
6秒前
张张完成签到,获得积分20
6秒前
7秒前
8秒前
花楸树完成签到,获得积分10
9秒前
科研通AI5应助dada采纳,获得10
10秒前
YY完成签到 ,获得积分10
10秒前
鱼丸发布了新的文献求助10
11秒前
慌慌完成签到 ,获得积分10
11秒前
孤独的大灰狼完成签到 ,获得积分10
11秒前
花楸树发布了新的文献求助10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776189
求助须知:如何正确求助?哪些是违规求助? 3321701
关于积分的说明 10207096
捐赠科研通 3036920
什么是DOI,文献DOI怎么找? 1666478
邀请新用户注册赠送积分活动 797492
科研通“疑难数据库(出版商)”最低求助积分说明 757859