Prediction of BRAF and TERT status in PTCs by machine learning-based ultrasound radiomics methods: A multicenter study

医学 无线电技术 机器学习 超声波 内科学 肿瘤科 人工智能 计算机科学 放射科
作者
Hui Shi,Ke Ding,Xiuyan Yang,Ting Wu,Jialin Zheng,Li Fan Wang,Boyang Zhou,Liping Sun,Yaojun Zhang,Chong Zhao,Hui Xu
出处
期刊:Journal of clinical & translational endocrinology [Elsevier]
卷期号:: 100390-100390
标识
DOI:10.1016/j.jcte.2025.100390
摘要

Preoperative identification of genetic mutations is conducive to individualized treatment and management of papillary thyroid carcinoma (PTC) patients. Purpose: To investigate the predictive value of the machine learning (ML)-based ultrasound (US) radiomics approaches for BRAF V600E and TERT promoter status (individually and coexistence) in PTC. This multicenter study retrospectively collected data of 1076 PTC patients underwent genetic testing detection for BRAF V600E and TERT promoter between March 2016 and December 2021. Radiomics features were extracted from routine grayscale ultrasound images, and gene status-related features were selected. Then these features were included to nine different ML models to predicting different mutations, and optimal models plus statistically significant clinical information were also conducted. The models underwent training and testing, and comparisons were performed. The Decision Tree-based US radiomics approach had superior prediction performance for the BRAF V600E mutation compared to the other eight ML models, with an area under the curve (AUC) of 0.767 versus 0.547-0.675 (p < 0.05). The US radiomics methodology employing Logistic Regression exhibited the highest accuracy in predicting TERT promoter mutations (AUC, 0.802 vs. 0.525-0.701, p < 0.001) and coexisting BRAF V600E and TERT promoter mutations (0.805 vs. 0.678-0.743, p < 0.001) within the test set. The incorporation of clinical factors enhanced predictive performances to 0.810 for BRAF V600E mutant, 0.897 for TERT promoter mutations, and 0.900 for dual mutations in PTCs. The machine learning-based US radiomics methods, integrated with clinical characteristics, demonstrated effectiveness in predicting the BRAF V600E and TERT promoter mutations in PTCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xlarrow发布了新的文献求助60
刚刚
小号完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
KOZUME发布了新的文献求助30
1秒前
张跑跑发布了新的文献求助10
2秒前
CHENISTRY完成签到,获得积分10
2秒前
诺曼完成签到 ,获得积分10
2秒前
2秒前
2秒前
KFCjiji发布了新的文献求助10
4秒前
平淡1997亮眼小虫虫完成签到 ,获得积分10
4秒前
711notfound发布了新的文献求助10
4秒前
斯文败类应助粗心的向真采纳,获得10
7秒前
7秒前
8秒前
我还没准备好完成签到,获得积分10
8秒前
yezi完成签到,获得积分10
9秒前
9秒前
小青椒应助ym采纳,获得20
10秒前
10秒前
蝈蝈完成签到,获得积分10
11秒前
旭辰发布了新的文献求助10
12秒前
虚拟的煜祺关注了科研通微信公众号
12秒前
西厢张生发布了新的文献求助10
12秒前
yyj完成签到,获得积分10
13秒前
达拉崩吧完成签到,获得积分10
13秒前
Subway完成签到,获得积分10
14秒前
14秒前
15秒前
王壬子完成签到,获得积分10
16秒前
hhy发布了新的文献求助10
16秒前
李爱国应助wangxiangqin采纳,获得10
16秒前
冷艳水壶发布了新的文献求助50
17秒前
17秒前
大个应助00采纳,获得10
19秒前
笨笨蜜蜂发布了新的文献求助30
19秒前
我是老大应助陈转霞采纳,获得10
20秒前
creasent应助科研通管家采纳,获得100
20秒前
思源应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424683
求助须知:如何正确求助?哪些是违规求助? 4539082
关于积分的说明 14165073
捐赠科研通 4456131
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483