已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using Multiple Biased Data Sets to Recover Missing Trips with a Behaviorally Informed Model

TRIPS体系结构 数据收集 缺少数据 计算机科学 运筹学 计量经济学 运输工程 统计 工程类 经济 数学 机器学习
作者
Xiangyang Guan,Shuai Huang,Cynthia Chen
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2024.0550
摘要

Trip generation, a critical first step in travel demand forecasting, requires not only estimating trips from the observed sample data, but also calculating the total number of trips in the population, including both the observed trips and the trips missed from the sample (we call them missing trips in this paper). The latter, how to recover missing trips, is scarcely studied in the academic literature, and the state-of-the-art practice is through the application of sample weights to extrapolate from observed trips to the population total. In recent years, big location-based service (LBS) has become a promising alternative data source (in addition to household travel survey data) in trip generation. Because users self-select into using different mobile services that result in LBS data, selection bias exists in the LBS data, and the kinds of trips excluded or included differ systematically among data sources. This study addresses this issue and develops a behaviorally informed approach to quantify the selection biases and recover missing trips. The key idea is that because biases reflected in different data sources are likely different, the integration of multiple biased data sources will mitigate biases. This is achieved by formulating a capture probability that specifies the probability of capturing a trip in a data set as a function of various behavioral factors (e.g., socio-demographics and area-related factors) and estimating the associated parameters through maximum likelihood or Bayesian methods. This approach is evaluated through experimental studies that test the effects of data and model uncertainty on its ability of recovering missing trips. The model is also applied to two real-world case studies: one using the 2017 National Household Travel Survey data and the other using two LBS data sets. Our results demonstrate the robustness of the model in recovering missing trips, even when the analyst completely mis-specifies the underlying trip generation process and the capture probability functions (for quantifying selection biases). The developed methodology can be scalable to any number of data sets and is applicable to both big and small data sets. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods for Urban Mobility. Funding: This work was supported by the Division of Civil, Mechanical and Manufacturing Innovation [Grant 2114260], the National Institute of General Medical Sciences [Grant 1R01GM108731-01A1], and the U.S. Department of Transportation [Grant 69A3551747116]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2024.0550 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ayo发布了新的文献求助10
1秒前
排骨大王完成签到,获得积分10
3秒前
木子李发布了新的文献求助10
4秒前
Freedom_1996完成签到,获得积分10
8秒前
Swear完成签到 ,获得积分10
8秒前
木子李完成签到,获得积分10
17秒前
城南烤地瓜完成签到 ,获得积分10
20秒前
26秒前
不去明知山完成签到 ,获得积分10
27秒前
lunar完成签到 ,获得积分10
35秒前
44秒前
mz完成签到 ,获得积分10
48秒前
57秒前
57秒前
无花果应助Jiaowen采纳,获得10
59秒前
牛牛完成签到 ,获得积分10
1分钟前
ma发布了新的文献求助10
1分钟前
健康的宛菡完成签到 ,获得积分10
1分钟前
养乐多敬你完成签到 ,获得积分10
1分钟前
精明凡双完成签到,获得积分10
1分钟前
1分钟前
zlx完成签到 ,获得积分10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Jiaowen发布了新的文献求助10
1分钟前
YCYycy完成签到,获得积分10
1分钟前
suibiao完成签到 ,获得积分10
1分钟前
1分钟前
zlx关注了科研通微信公众号
1分钟前
ma完成签到,获得积分20
1分钟前
mc发布了新的文献求助10
1分钟前
北北北发布了新的文献求助10
1分钟前
Jiaowen完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4763295
求助须知:如何正确求助?哪些是违规求助? 4102368
关于积分的说明 12693637
捐赠科研通 3819018
什么是DOI,文献DOI怎么找? 2107999
邀请新用户注册赠送积分活动 1132522
关于科研通互助平台的介绍 1011901