材料科学
阳极
接口(物质)
电池(电)
钠离子电池
能量密度
原子单位
比例(比率)
离子
理论(学习稳定性)
钠
工程物理
化学工程
热力学
复合材料
物理化学
冶金
功率(物理)
计算机科学
电极
法拉第效率
毛细管作用
化学
工程类
物理
机器学习
量子力学
毛细管数
作者
Zhi Huo,Han Fang,S. Lin,Junheng Huang,Yangjie Liu,Pei Liang,Peiwen Wang,Huilin Pan,Xiang Hu,Zheng Bo,Zhenhai Wen
标识
DOI:10.1002/aenm.202501288
摘要
Abstract In the quest for high‐performance sodium‐ion batteries, the enduring dilemma of enhancing interfacial kinetics while preserving structural integrity in conventional hard carbon anodes has remained a formidable barrier. This study presents a groundbreaking molten salt‐assisted synthesis of manganese single atoms anchored within hierarchically porous hard carbon nanosheets (Mn‐PHCS) with a unique asymmetric Mn–O 3 –N configuration. Through atomic‐level interface engineering, the local electronic architecture of hard carbon is intricately modulated, expediting interfacial charge transfer and fostering rapid pseudocapacitive reactions. Density functional theory calculations further validate that the Mn–O 3 –N active centers refine the electrode–electrolyte interface, catalyze controlled NaPF 6 decomposition, and facilitate the formation of an inorganic‐rich (NaF‐dominated) solid‐electrolyte interphase layer. The meticulous atomic configuration of Mn‐PHCS results in an impressive reversible capacity of 419 mAh g −1 , a robust capacity retention of 94.3% after 1000 cycles at 1 A g −1 , and an extraordinary cycle life exceeding 7500 cycles at 5 A g −1 . The sodium‐ion full cell, when paired with Na 3 V 2 (PO 4 ) 3 cathode, achieves a compelling energy density of 269.2 Wh kg −1 . This work not only elucidates the intricate relationship between atomic‐scale interface engineering and electrochemical performance but also sets forth a transformative principle for the development of next‐generation energy storage systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI