Construction and validation of prognostic models for acute kidney disease and mortality in patients at risk of malnutrition: an interpretable machine learning approach

营养不良 医学 重症监护医学 疾病 机器学习 内科学 计算机科学
作者
Xinyuan Wang,Chenyu Li,Lingyu Xu,Siqi Jiang,Chen Guan,Lin Che,Yanfei Wang,Xiaofei Man,Yan Xu
出处
期刊:Ndt Plus [Oxford University Press]
卷期号:18 (4): sfaf080-sfaf080
标识
DOI:10.1093/ckj/sfaf080
摘要

ABSTRACT Background Acute kidney injury (AKI) is a prevalent complication in patients at risk of malnutrition, elevating the risks of acute kidney disease (AKD) and mortality. AKD reflects the adverse events developing after AKI. This study aimed to develop and validate machine learning (ML) models for predicting the occurrence of AKD, AKI and mortality in patients at risk of malnutrition. Methods We retrospectively reviewed the medical records of patients at risk of malnutrition. Eight ML algorithms were employed to predict AKD, AKI and mortality. The performance of the best model was evaluated using various metrics and interpreted using the SHapley Additive exPlanation (SHAP) method. An artificial intelligence (AI)-driven web application was also created based on the best model. Results A total of 13 395 patients were included in our study. Among them, 1751 (13.07%) developed subacute AKD, 1253 (9.35%) were transient AKI, and 1455 (10.86%) met both AKI and AKD criteria. The incidence rate of mortality was 6.74%. The light gradient boosting machine (LGBM) outperformed other models in predicting AKD, AKI and mortality, with area under curve values of 0.763, 0.801 and 0.881, respectively. The SHAP method revealed that AKI stage, lactate dehydrogenase, albumin, aspirin usage and serum creatinine were the top five predictors of AKD. An online prediction website for AKI, AKD and mortality was developed based on the final models. Conclusions The LGBM models provide an effective method for predicting AKD, AKI and mortality at an early stage in patients at risk of malnutrition, enabling prompt interventions. Compared with the AKD model, the models for predicting AKI and mortality perform better. The AI-driven web application can significantly aid in creating personalized preventive measures. Future work will aim to expand the application to larger, more diverse populations, incorporate additional biomarkers and refine ML algorithms to improve predictive accuracy and clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
希望天下0贩的0应助小麦采纳,获得10
2秒前
浮游应助liu采纳,获得10
2秒前
aswed发布了新的文献求助10
2秒前
磷酸丙糖异构酶完成签到,获得积分10
2秒前
不难不难发布了新的文献求助10
3秒前
4秒前
soda完成签到,获得积分10
4秒前
小布莱克发布了新的文献求助10
4秒前
melody发布了新的文献求助10
4秒前
Lshyong发布了新的文献求助10
5秒前
6秒前
7秒前
Tanya完成签到 ,获得积分10
9秒前
吃饱饱完成签到 ,获得积分10
10秒前
王博林发布了新的文献求助10
11秒前
科研通AI2S应助泷生采纳,获得10
11秒前
核桃发布了新的文献求助10
12秒前
12秒前
14秒前
星熠完成签到,获得积分10
14秒前
11完成签到 ,获得积分10
14秒前
15秒前
aswed完成签到,获得积分10
16秒前
16秒前
17秒前
18秒前
小马甲应助泷生采纳,获得10
18秒前
Moment完成签到 ,获得积分10
20秒前
20秒前
YutingHao发布了新的文献求助50
20秒前
田様应助泷生采纳,获得10
25秒前
无极微光应助WH采纳,获得20
27秒前
失眠可愁完成签到,获得积分10
28秒前
30秒前
32秒前
kyawawa发布了新的文献求助20
32秒前
核桃发布了新的文献求助10
33秒前
昂帕帕斯完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564443
求助须知:如何正确求助?哪些是违规求助? 4649172
关于积分的说明 14688036
捐赠科研通 4591092
什么是DOI,文献DOI怎么找? 2519026
邀请新用户注册赠送积分活动 1491624
关于科研通互助平台的介绍 1462654