SDFIE-NET – A self-learning dual-feature fusion information capture expression method for birdsong recognition

对偶(语法数字) 特征(语言学) 网(多面体) 人工智能 计算机科学 模式识别(心理学) 表达式(计算机科学) 语音识别 数学 艺术 语言学 哲学 几何学 文学类 程序设计语言
作者
Qin Zhang,Shipeng Hu,Lu Tang,Rui Deng,Choujun Yang,Guoxiong Zhou,Aibin Chen
出处
期刊:Applied Acoustics [Elsevier BV]
卷期号:221: 110004-110004 被引量:1
标识
DOI:10.1016/j.apacoust.2024.110004
摘要

Bird recognition is important for the monitoring of bird populations and the protection of ecosystems. Identifying birds through image forms can be difficult due to the complexity of natural environments. Song-based bird recognition allows for bird identification with only a small amount of background noise introduced, however, efficiently recognizing bird songs remains a challenging task. Based on this problem, this paper proposed a self-learning dual-feature fusion information capture expression method (SDFIE-NET) for recognizing birdsong. Firstly, using the Mel filter excerpt the low-frequency characteristics of the bird song. Since fixed-parameter filters are incapable of achieving different feature extraction effects based on different birdsong. In this paper, we incorporate a fully learnable audio classification front-end Leaf architecture for the extraction of bird song feature information, which can self-learn different extraction parameters for the birdsong. Effectively combining the high-frequency feature information and low-frequency differences acquired by the two approaches corresponds to the declared dual-feature fusion module (SCDFF), reducing information redundancy and improving characterization capability. Secondly, the backbone network utilizes SDFIE-NET, which is composed of the Fused-MBConv module and modified CA-MBConv module. The Criss-Cross Attention module is added after each layer composed of Fused-MBConv modules. This improves the speed and accuracy of effective information transfer between internal modules and increases the expressive power of the model at the pixel level. To enhance the anti-interference and generalization ability of the model, we constructed a self-made dataset (Bird_alldata) consisting of 30 kinds of birdsong. On this dataset, we performed a variety of experiments, and recognition accuracy reached 95.77 % and the F1-score reached 95.52 %. Generalization experiments were conducted on the environmental sound dataset Urbansound8K and the bird song dataset Birdsdata, and the model achieves recognition accuracies of 94.05 % and 94.10 % on the two datasets, with F1-scores of 94.21 % and 94.05 %, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助CA采纳,获得10
1秒前
Owen应助机智的水风采纳,获得10
1秒前
1秒前
2秒前
2秒前
3秒前
风趣的平蓝完成签到,获得积分20
4秒前
wangnankai完成签到,获得积分10
5秒前
船船完成签到,获得积分10
5秒前
曹小曹完成签到,获得积分10
5秒前
万能图书馆应助等待盼雁采纳,获得10
6秒前
我我我发布了新的文献求助10
6秒前
搜集达人应助hui采纳,获得10
7秒前
cff发布了新的文献求助10
8秒前
12秒前
13秒前
情怀应助废物自救采纳,获得10
13秒前
hansiball发布了新的文献求助10
13秒前
14秒前
小欧文完成签到,获得积分10
16秒前
等待盼雁发布了新的文献求助10
17秒前
我我我完成签到,获得积分20
18秒前
18秒前
协和_子鱼发布了新的文献求助10
19秒前
科研通AI5应助世上无难事采纳,获得10
19秒前
20秒前
研友_MLJpKZ完成签到,获得积分10
22秒前
w934420513发布了新的文献求助10
23秒前
852应助提拉敏苏采纳,获得30
27秒前
32秒前
执着的钢笔完成签到,获得积分20
33秒前
36秒前
37秒前
38秒前
41秒前
雾野发布了新的文献求助10
42秒前
胖头鱼发布了新的文献求助10
43秒前
43秒前
44秒前
FashionBoy应助ira采纳,获得10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323865
关于积分的说明 10216275
捐赠科研通 3039094
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366