The application of graphic language personalized emotion in graphic design

计算机科学 平面设计 排版 人机交互 卷积神经网络 视觉语言 感觉 面部表情 人工智能 多媒体 自然语言处理 心理学 语言学 社会心理学 哲学 艺术 视觉艺术
作者
Zhenzhen Pan,Hong Pan,Junzhan Zhang
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (9): e30180-e30180 被引量:1
标识
DOI:10.1016/j.heliyon.2024.e30180
摘要

Emotion Recognition is the experience of attitude in graphic language expression and composition. People use both verbal and non-verbal behaviours to communicate their emotions. Visual communication and graphic design are always evolving to meet the demands of an increasingly affluent and culturally conscious populace. When graphic designing works, designers should consider their own opinions about related works from the audience's or customer's standpoint so that the emotion between them can resonate. Hence, this study proposes a personalized emotion recognition framework based on convolutional neural networks (PERF-CNN) to create visual content for graphic design. Graphic designers prioritize the logic of showing objects in interactive designs and use visual hierarchy and page layout approaches to respond to users' demands via typography and imagery. This ensures that the user experience is maximized. This research identifies three tiers of emotional thinking: expressive signal, emotional experience, and emotional infiltration, all of which affect graphic design. This article explores the subject of graphic design language and its ways of emotional recognition, as well as the relationship between graphic images, shapes, and feelings. CNN initially extracted expressive features from the user's face images and the poster's visual information. The clustering process categorizes the poster or advertisement images into positive, negative, and neutral classes. Research and applications of graphic design language benefit from the proposed method's experimental results, demonstrating that it outperforms conventional classification approaches in the dataset. In comparison to other popular models, the experimental results demonstrate that the proposed PERF-CNN model improves each of the following: classification accuracy (97.4 %), interaction ratio (95.6 %), emotion recognition ratio (98.9 %), rate of influence of pattern and colour features (94.4 %), and prediction error rate (6.5 %).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
UPUP0707完成签到,获得积分10
刚刚
研友_VZG7GZ应助小四喜采纳,获得10
2秒前
大知闲闲给大知闲闲的求助进行了留言
3秒前
4秒前
科研通AI5应助橘子海采纳,获得10
4秒前
6秒前
8秒前
打打应助新陈采纳,获得10
9秒前
nimabide发布了新的文献求助10
12秒前
15秒前
SciGPT应助清秀的寄柔采纳,获得10
18秒前
新陈发布了新的文献求助10
20秒前
熬夜猝死的我完成签到 ,获得积分10
22秒前
23秒前
dkyt完成签到,获得积分10
23秒前
wx0816完成签到,获得积分10
26秒前
29秒前
Likun发布了新的文献求助10
30秒前
30秒前
Alex发布了新的文献求助10
34秒前
34秒前
爆米花应助任性的天空采纳,获得10
36秒前
37秒前
一粟的粉r完成签到 ,获得积分10
38秒前
寒冷的友绿给寒冷的友绿的求助进行了留言
39秒前
39秒前
敖猪猪是han贼完成签到,获得积分10
41秒前
42秒前
酱酱发布了新的文献求助10
43秒前
44秒前
橘子海发布了新的文献求助10
48秒前
657完成签到 ,获得积分10
49秒前
酱酱完成签到,获得积分10
49秒前
迪闪闪发光完成签到,获得积分10
54秒前
小也发布了新的文献求助10
55秒前
隐形曼青应助科研通管家采纳,获得10
57秒前
顾矜应助科研通管家采纳,获得10
57秒前
ding应助科研通管家采纳,获得10
57秒前
57秒前
cai应助科研通管家采纳,获得10
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781287
求助须知:如何正确求助?哪些是违规求助? 3326814
关于积分的说明 10228352
捐赠科研通 3041803
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751