亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reconstructed Graph Neural Network With Knowledge Distillation for Lightweight Anomaly Detection

异常检测 计算机科学 人工智能 数据挖掘 图形 分布式计算 理论计算机科学
作者
Xiaokang Zhou,Jiayi Wu,Wei Liang,Kevin I‐Kai Wang,Zheng Yan,Laurence T. Yang,Qun Jin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 11817-11828 被引量:16
标识
DOI:10.1109/tnnls.2024.3389714
摘要

The proliferation of Internet-of-Things (IoT) technologies in modern smart society enables massive data exchange for offering intelligent services. It becomes essential to ensure secure communications while exchanging highly sensitive IoT data efficiently, which leads to high demands for lightweight models or algorithms with limited computation capability provided by individual IoT devices. In this study, a graph representation learning model, which seamlessly incorporates graph neural network (GNN) and knowledge distillation (KD) techniques, named reconstructed graph with global-local distillation (RG-GLD), is designed to realize the lightweight anomaly detection across IoT communication networks. In particular, a new graph network reconstruction strategy, which treats data communications as nodes in a directed graph while edges are then connected according to two specifically defined rules, is devised and applied to facilitate the graph representation learning in secure and efficient IoT communications. Both the structural and traffic features are then extracted from the graph data and flow data respectively, based on the graph attention network (GAT) and multilayer perceptron (MLP) techniques. These can benefit the GNN-based KD process in accordance with the more effective feature fusion and representation, considering both structural and data levels across the dynamic IoT networks. Furthermore, a lightweight local subgraph preservation mechanism improved by the graph attention mechanism and downsampling scheme to better utilize the topological information, and a so-called global information alignment defined based on the self-attention mechanism to effectively preserve the global information, are developed and incorporated in a refined graph attention based KD scheme. Compared with four different baseline methods, experiments and evaluations conducted based on two public datasets demonstrate the usefulness and effectiveness of our proposed model in improving the efficiency of knowledge transfer with higher classification accuracy but lower computational load, which can be deployed for lightweight anomaly detection in sustainable IoT computing environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助sino-ft采纳,获得10
39秒前
烟花应助ukz37752采纳,获得30
54秒前
Haihai应助科研通管家采纳,获得10
59秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
sino-ft发布了新的文献求助10
1分钟前
1分钟前
ukz37752发布了新的文献求助30
1分钟前
1分钟前
好好好发布了新的文献求助10
1分钟前
DSUNNY完成签到 ,获得积分10
2分钟前
叶十七完成签到,获得积分10
3分钟前
4分钟前
甜美的秋尽完成签到,获得积分10
5分钟前
5分钟前
紫熊完成签到,获得积分10
5分钟前
wanjingwan完成签到 ,获得积分10
6分钟前
喜悦的板凳完成签到 ,获得积分10
6分钟前
科研通AI5应助zzb采纳,获得10
7分钟前
7分钟前
7分钟前
斐嘿嘿发布了新的文献求助10
7分钟前
zzb发布了新的文献求助10
7分钟前
花花公子完成签到,获得积分10
7分钟前
小景007完成签到,获得积分10
7分钟前
7分钟前
科研通AI5应助优美的夜柳采纳,获得10
8分钟前
DDd完成签到 ,获得积分10
8分钟前
9分钟前
李剑鸿发布了新的文献求助400
9分钟前
10分钟前
博ge完成签到 ,获得积分10
10分钟前
10分钟前
起风了完成签到 ,获得积分10
10分钟前
优美的夜柳完成签到,获得积分10
10分钟前
11分钟前
叶子发布了新的文献求助20
11分钟前
sangsang完成签到,获得积分20
12分钟前
jyy发布了新的文献求助80
12分钟前
光合作用完成签到,获得积分10
12分钟前
高分求助中
中华人民共和国出版史料 4 1000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845540
求助须知:如何正确求助?哪些是违规求助? 3387824
关于积分的说明 10550626
捐赠科研通 3108449
什么是DOI,文献DOI怎么找? 1712776
邀请新用户注册赠送积分活动 824505
科研通“疑难数据库(出版商)”最低求助积分说明 774877