Reconstructed Graph Neural Network With Knowledge Distillation for Lightweight Anomaly Detection

异常检测 计算机科学 人工智能 数据挖掘 图形 分布式计算 理论计算机科学
作者
Xiaokang Zhou,Jiayi Wu,Wei Liang,Kevin I‐Kai Wang,Zheng Yan,Laurence T. Yang,Qun Jin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 11817-11828 被引量:23
标识
DOI:10.1109/tnnls.2024.3389714
摘要

The proliferation of Internet-of-Things (IoT) technologies in modern smart society enables massive data exchange for offering intelligent services. It becomes essential to ensure secure communications while exchanging highly sensitive IoT data efficiently, which leads to high demands for lightweight models or algorithms with limited computation capability provided by individual IoT devices. In this study, a graph representation learning model, which seamlessly incorporates graph neural network (GNN) and knowledge distillation (KD) techniques, named reconstructed graph with global-local distillation (RG-GLD), is designed to realize the lightweight anomaly detection across IoT communication networks. In particular, a new graph network reconstruction strategy, which treats data communications as nodes in a directed graph while edges are then connected according to two specifically defined rules, is devised and applied to facilitate the graph representation learning in secure and efficient IoT communications. Both the structural and traffic features are then extracted from the graph data and flow data respectively, based on the graph attention network (GAT) and multilayer perceptron (MLP) techniques. These can benefit the GNN-based KD process in accordance with the more effective feature fusion and representation, considering both structural and data levels across the dynamic IoT networks. Furthermore, a lightweight local subgraph preservation mechanism improved by the graph attention mechanism and downsampling scheme to better utilize the topological information, and a so-called global information alignment defined based on the self-attention mechanism to effectively preserve the global information, are developed and incorporated in a refined graph attention based KD scheme. Compared with four different baseline methods, experiments and evaluations conducted based on two public datasets demonstrate the usefulness and effectiveness of our proposed model in improving the efficiency of knowledge transfer with higher classification accuracy but lower computational load, which can be deployed for lightweight anomaly detection in sustainable IoT computing environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小鞠完成签到,获得积分10
1秒前
Shiku完成签到,获得积分10
2秒前
3秒前
4秒前
轻松雨旋完成签到 ,获得积分10
4秒前
文龙发布了新的文献求助10
6秒前
粒子完成签到,获得积分20
6秒前
文龙发布了新的文献求助10
7秒前
文龙发布了新的文献求助10
7秒前
文龙发布了新的文献求助10
7秒前
222完成签到,获得积分10
7秒前
李健应助zxm1997采纳,获得30
11秒前
量子星尘发布了新的文献求助10
12秒前
wangxiaobin完成签到 ,获得积分10
12秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
16秒前
无辜的猎豹完成签到 ,获得积分10
16秒前
17秒前
17秒前
18秒前
不想干活应助科研通管家采纳,获得10
19秒前
不想干活应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
不想干活应助科研通管家采纳,获得10
20秒前
20秒前
不想干活应助科研通管家采纳,获得10
20秒前
不想干活应助科研通管家采纳,获得10
20秒前
ZhaoY完成签到,获得积分10
20秒前
所所应助科研通管家采纳,获得10
20秒前
20秒前
不想干活应助科研通管家采纳,获得10
20秒前
SciGPT应助科研通管家采纳,获得10
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4221600
求助须知:如何正确求助?哪些是违规求助? 3755023
关于积分的说明 11805854
捐赠科研通 3418354
什么是DOI,文献DOI怎么找? 1876242
邀请新用户注册赠送积分活动 929865
科研通“疑难数据库(出版商)”最低求助积分说明 838213