Focused active learning for histopathological image classification

人工智能 计算机科学 MNIST数据库 班级(哲学) 主动学习(机器学习) 模式识别(心理学) 深度学习 机器学习
作者
Arne Schmidt,Pablo Morales-Álvarez,Lee Cooper,Lee A. Newberg,Andinet Enquobahrie,Rafael Molina,Aggelos K. Katsaggelos
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:95: 103162-103162
标识
DOI:10.1016/j.media.2024.103162
摘要

Active Learning (AL) has the potential to solve a major problem of digital pathology: the efficient acquisition of labeled data for machine learning algorithms. However, existing AL methods often struggle in realistic settings with artifacts, ambiguities, and class imbalances, as commonly seen in the medical field. The lack of precise uncertainty estimations leads to the acquisition of images with a low informative value. To address these challenges, we propose Focused Active Learning (FocAL), which combines a Bayesian Neural Network with Out-of-Distribution detection to estimate different uncertainties for the acquisition function. Specifically, the weighted epistemic uncertainty accounts for the class imbalance, aleatoric uncertainty for ambiguous images, and an OoD score for artifacts. We perform extensive experiments to validate our method on MNIST and the real-world Panda dataset for the classification of prostate cancer. The results confirm that other AL methods are 'distracted' by ambiguities and artifacts which harm the performance. FocAL effectively focuses on the most informative images, avoiding ambiguities and artifacts during acquisition. For both experiments, FocAL outperforms existing AL approaches, reaching a Cohen's kappa of 0.764 with only 0.69% of the labeled Panda data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
科研通AI2S应助三石呦423采纳,获得10
1秒前
愉快冰淇淋完成签到,获得积分10
3秒前
vv完成签到,获得积分10
3秒前
diupapa应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
望除应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得30
7秒前
Hello应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
清爽的山雁关注了科研通微信公众号
9秒前
10秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846356
求助须知:如何正确求助?哪些是违规求助? 3388854
关于积分的说明 10554489
捐赠科研通 3109256
什么是DOI,文献DOI怎么找? 1713555
邀请新用户注册赠送积分活动 824800
科研通“疑难数据库(出版商)”最低求助积分说明 775068