A multimodal shared network with a cross-modal distribution constraint for continuous emotion recognition

计算机科学 模式 判别式 人工智能 推论 稳健性(进化) 杠杆(统计) 情态动词 利用 约束(计算机辅助设计) 机器学习 共享空间 人机交互 空格(标点符号) 机械工程 化学 高分子化学 工程类 社会科学 生物化学 计算机安全 社会学 基因 操作系统
作者
Chiqin Li,Lun Xie,Xingmao Shao,Hang Pan,Zhiliang Wang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108413-108413 被引量:3
标识
DOI:10.1016/j.engappai.2024.108413
摘要

Continuous emotion recognition has been a compelling topic in affective computing because it can interpret human emotions subtly and continuously. Existing studies have achieved advanced emotion recognition performance using multimodal knowledge. However, these studies generally ignore the circumstances where some particular modalities are missing in the inference phase and thus become sensitive to the absence of modalities. To resolve this issue, we propose a novel multimodal shared network with a cross-modal distribution constraint, i.e. the DS-Net, which aims to improve the robustness of the model to missing modalities. The training process of the proposed network generally includes two components: multimodal shared space modeling and a cross-modal distribution matching constraint. The former utilizes the local and temporal information of multimodal signals for multimodal shared space modeling, while the latter further enhances the multimodal shared space via a loose constraint method. Coupled with the latter, the former can effectively exploit the complementarity between videos and peripheral physiological signals (PPSs), thus enhancing the discriminative capability of the shared space. Based on the shared space, the DS-Net works during the inference phase with only one modality input and can leverage multimodal knowledge to improve emotion recognition accuracy. Comprehensive experiments were conducted on two public datasets. Results demonstrate that the proposed method is competitive or superior to the current state-of-the-art methods. Further experiments indicate that the proposed method can be extended to handle other modalities and to deal with partially missing modalities, demonstrating its potential in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
哦啦啦发布了新的文献求助10
4秒前
6秒前
8秒前
77发布了新的文献求助10
8秒前
烟花应助carrieschen采纳,获得10
9秒前
9秒前
一枪入魂完成签到,获得积分10
12秒前
薅住科研的头发完成签到,获得积分10
12秒前
哦啦啦完成签到,获得积分10
13秒前
科研小白发布了新的文献求助10
13秒前
温暖发布了新的文献求助10
14秒前
暗语完成签到,获得积分20
15秒前
16秒前
17秒前
小马甲应助江宿采纳,获得10
18秒前
18秒前
赘婿应助墨尔根戴青采纳,获得10
18秒前
19秒前
mogen完成签到,获得积分10
20秒前
科研小白完成签到,获得积分10
20秒前
甜蜜的曼冬完成签到 ,获得积分10
21秒前
科研通AI5应助Chris小七采纳,获得10
21秒前
24秒前
wangrblzu应助玥越采纳,获得10
24秒前
25秒前
xiyue应助chenxiaolei采纳,获得10
25秒前
Morii1999完成签到,获得积分20
26秒前
27秒前
27秒前
28秒前
鹤立鸡群1964完成签到,获得积分10
28秒前
29秒前
30秒前
30秒前
30秒前
Morii1999发布了新的文献求助10
30秒前
良辰应助xishanmeng采纳,获得10
30秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842873
求助须知:如何正确求助?哪些是违规求助? 3384852
关于积分的说明 10537856
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710311
邀请新用户注册赠送积分活动 823582
科研通“疑难数据库(出版商)”最低求助积分说明 774149