A Steady-State Algorithm for Solving Expensive Multiobjective Optimization Problems With Nonparallelizable Evaluations

数学优化 多目标优化 标杆管理 计算机科学 马氏距离 进化算法 概率逻辑 帕累托原理 水准点(测量) 选择(遗传算法) 算法 数学 机器学习 人工智能 业务 营销 大地测量学 地理
作者
Kamrul Hasan Rahi,Hemant Kumar Singh,Tapabrata Ray
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (5): 1544-1558 被引量:12
标识
DOI:10.1109/tevc.2022.3219062
摘要

Expensive multiobjective optimization problems (EMOPs) refer to those wherein evaluation of each candidate solution incurs a significant cost. To solve such problems within a limited number of solution evaluations, surrogate-assisted evolutionary algorithms (SAEAs) are often used. However, existing SAEAs typically operate in a generational framework wherein multiple solutions are identified for evaluation in each generation. There exist relatively few proposals in steady-state framework, wherein only a single solution is evaluated in each iteration. The development of such algorithms is crucial to efficiently solve EMOPs for which the evaluation of candidate designs cannot be parallelized. Furthermore, regardless of the framework used, the performance of current SAEAs tends to degrade when the Pareto front (PF) of the problem has irregularities, such as extremely concave/convex segments, even for 2/3-objective problems. To contextualize the motivation of this study, the performance of a few state-of-the-art SAEAs is first demonstrated on some such selected problems. Then, to address the above research gaps, we propose a surrogate-assisted steady-state EA (SASSEA), which incorporates a number of novel elements, including: 1) effective use of model uncertainty information to aid the search, including the use of the probabilistic dominance and Mahalanobis distance; 2) two-step infill identification using nondominance (ND) and distance-based selection; and 3) a shadow ND mechanism to avoid repeated selection and evaluation of dominated solutions. The efficacy of the proposed approach is demonstrated through extensive benchmarking on a range of test problems. It shows competitive performance relative to many state-of-the-art SAEAs, including both steady-state and generational approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
温柔冥幽发布了新的文献求助10
1秒前
笑点低的发箍完成签到,获得积分10
1秒前
1秒前
瘦瘦代桃发布了新的文献求助10
2秒前
hvgjgfjhgjh发布了新的文献求助10
2秒前
图图完成签到 ,获得积分10
2秒前
2秒前
3秒前
Ava应助等一个晴天采纳,获得10
3秒前
4秒前
4秒前
Mira发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
田田田chong完成签到,获得积分10
8秒前
8秒前
xue发布了新的文献求助10
9秒前
9秒前
缓慢思枫发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
英雄小伙伴完成签到,获得积分10
10秒前
12秒前
独孤幻月96应助网友小苏采纳,获得10
13秒前
13秒前
源源发布了新的文献求助10
14秒前
dmsoli发布了新的文献求助10
14秒前
14秒前
阿赵发布了新的文献求助10
15秒前
liuhanda完成签到,获得积分10
15秒前
15秒前
15秒前
Wind应助WILD采纳,获得10
17秒前
聆听发布了新的文献求助10
19秒前
19秒前
万能图书馆应助哈哈哈采纳,获得10
20秒前
小马甲应助dspan采纳,获得10
20秒前
20秒前
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704813
求助须知:如何正确求助?哪些是违规求助? 5158878
关于积分的说明 15242939
捐赠科研通 4858662
什么是DOI,文献DOI怎么找? 2607392
邀请新用户注册赠送积分活动 1558393
关于科研通互助平台的介绍 1516137