亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretable machine learning to predict adverse perinatal outcomes: examining marginal predictive value of risk factors during pregnancy

医学 怀孕 逻辑回归 产科 接收机工作特性 背景(考古学) 阿普加评分 妊娠期 前瞻性队列研究 出生体重 内科学 古生物学 遗传学 生物
作者
Sun Ju Lee,Gian-Gabriel P. Garcia,Kaitlyn K. Stanhope,Marissa Platner,Sheree L. Boulet
出处
期刊:American Journal Of Obstetrics & Gynecology Mfm [Elsevier BV]
卷期号:5 (10): 101096-101096 被引量:2
标识
DOI:10.1016/j.ajogmf.2023.101096
摘要

The timely identification of nulliparas at high risk of adverse fetal and neonatal outcomes during pregnancy is crucial for initiating clinical interventions to prevent perinatal complications. Although machine learning methods have been applied to predict preterm birth and other pregnancy complications, many models do not provide explanations of their predictions, limiting the clinical use of the model.This study aimed to develop interpretable prediction models for a composite adverse perinatal outcome (stillbirth, neonatal death, estimated Combined Apgar score of <10, or preterm birth) at different points in time during the pregnancy and to evaluate the marginal predictive value of individual predictors in the context of a machine learning model.This was a secondary analysis of the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-be data, a prospective cohort study in which 10,038 nulliparous pregnant individuals with singleton pregnancies were enrolled. Here, interpretable prediction models were developed using L1-regularized logistic regression for adverse perinatal outcomes using data available at 3 study visits during the pregnancy (visit 1: 6 0/7 to 13 6/7 weeks of gestation; visit 2: 16 0/7 to 21 6/7 weeks of gestation; visit 3: 22 0/7 to 29 6/7 weeks of gestation). We identified the important predictors for each model using SHapley Additive exPlanations, a model-agnostic method of computing explanations of model predictions, and evaluated the marginal predictive value of each predictor using the DeLong test.Our interpretable machine learning model had an area under the receiver operating characteristic curves of 0.617 (95% confidence interval, 0.595-0.639; all predictor variables at visit 1), 0.652 (95% confidence interval, 0.631-0.673; all predictor variables at visit 2), and 0.673 (95% confidence interval, 0.651-0.694; all predictor variables at visit 3). For all visits, the placental biomarker inhibin A was a valuable predictor, as including inhibin A resulted in better performance in predicting adverse perinatal outcomes (P<.001, all visits). At visit 1, endoglin was also a valuable predictor (P<.001). At visit 2, free beta human chorionic gonadotropin (P=.001) and uterine artery pulsatility index (P=.023) were also valuable predictors. At visit 3, cervical length was also a valuable predictor (P<.001).Despite various advances in predictive modeling in obstetrics, the accurate prediction of adverse perinatal outcomes remains difficult. Interpretable machine learning can help clinicians understand how predictions are made, but barriers exist to the widespread clinical adoption of machine learning models for adverse perinatal outcomes. A better understanding of the evolution of risk factors for adverse perinatal outcomes throughout pregnancy is necessary for the development of effective interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
朱佳慧发布了新的文献求助10
9秒前
21秒前
无奈的代珊完成签到 ,获得积分10
22秒前
所所应助朱佳慧采纳,获得10
24秒前
39秒前
noss发布了新的文献求助10
45秒前
1分钟前
1分钟前
NexusExplorer应助来这里了采纳,获得10
1分钟前
kbcbwb2002完成签到,获得积分10
1分钟前
1分钟前
来这里了发布了新的文献求助10
2分钟前
2分钟前
科研通AI5应助FLN采纳,获得10
2分钟前
3分钟前
Wcy发布了新的文献求助10
3分钟前
3分钟前
cuddly完成签到 ,获得积分10
3分钟前
小w发布了新的文献求助10
3分钟前
Wcy完成签到,获得积分10
3分钟前
Ava应助坚定的小海豚采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
yy完成签到,获得积分10
3分钟前
小w发布了新的文献求助10
3分钟前
3分钟前
4分钟前
FLN发布了新的文献求助10
4分钟前
手帕很忙完成签到,获得积分10
4分钟前
4分钟前
大气的无颜完成签到,获得积分10
4分钟前
不安映秋发布了新的文献求助10
4分钟前
英俊的铭应助不安映秋采纳,获得10
4分钟前
盛事不朽完成签到 ,获得积分10
5分钟前
用户完成签到,获得积分10
5分钟前
FLN完成签到,获得积分10
5分钟前
6分钟前
Pendragon完成签到,获得积分10
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780810
求助须知:如何正确求助?哪些是违规求助? 3326334
关于积分的说明 10226580
捐赠科研通 3041516
什么是DOI,文献DOI怎么找? 1669465
邀请新用户注册赠送积分活动 799051
科研通“疑难数据库(出版商)”最低求助积分说明 758732