Preparation of a Novel Formaldehyde-Free Impregnated Decorative Paper Containing MnO2 Nanoparticles for Highly Efficient Formaldehyde Removal

材料科学 甲醛 硅烷 化学工程 浸出(土壤学) 吸附 复合材料 有机化学 化学 环境科学 土壤科学 工程类 土壤水分
作者
Ru Liu,Min Liang,Jianfeng Xu,Yuhui Sun,Ling Long,Li Zhu,Bin Lv,Bohan Yang,Yonghao Ni
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (29): 34941-34955 被引量:11
标识
DOI:10.1021/acsami.3c05791
摘要

The loading of catalytic manganese dioxide (MnO2) nanoparticles onto an impregnated decorative paper has been an effective method for the removal of indoor formaldehyde (HCHO) pollutants. However, its preparation can present numerous challenges, including instability in dipping emulsions and leaching. In this investigation, a novel and stable formaldehyde-free polyacrylate dipping emulsion containing MnO2 particles was prepared and then back-coated on a decorative paper. To improve the dispersion and fixation, the MnO2 was modified with silane. HCHO can undergo physical adsorption on the cellulosic fibers present in the paper, while it can also undergo chemical degradation into CO2 within the MnO2 groups. The silane not only enhanced the interfacial adhesion to a polyacrylate resin but also increased the interlayer distance, thereby creating a larger space for HCHO absorption. The impregnated decorative paper back-coated with 10 wt % of silane-modified MnO2 exhibited a removal efficiency of approximately 90% for HCHO at 20 °C. The removal rate further improved to approximately 100% when the temperature was increased to 60 °C. Moreover, it is worth noting that the release of volatile organic compounds was exceptionally minimal. Additionally, the particleboard bonded with this impregnated decorative paper exhibited an extremely low emission of HCHO, with a value that approached 0 mg·L-1. Furthermore, the bonding strength of the surface remained unaffected. Therefore, this study provides a simple and eco-friendly method for effectively removing HCHO, which can enhance indoor air quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
门门完成签到 ,获得积分10
刚刚
刚刚
1秒前
麦麦发布了新的文献求助20
2秒前
YW发布了新的文献求助10
2秒前
CC完成签到,获得积分10
2秒前
3秒前
4秒前
求助人员应助NN采纳,获得30
4秒前
Yel应助无语的问雁采纳,获得20
4秒前
4秒前
NexusExplorer应助眼睛大白凝采纳,获得10
5秒前
eason发布了新的文献求助100
6秒前
哈哈发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
yyy关注了科研通微信公众号
8秒前
9秒前
隐形曼青应助陈功人士采纳,获得10
9秒前
无花果应助Charlie_dolphin采纳,获得10
10秒前
10秒前
阿yueyue完成签到 ,获得积分10
10秒前
11秒前
11秒前
LLL关闭了LLL文献求助
12秒前
大模型应助xiaobai采纳,获得10
13秒前
李生完成签到 ,获得积分10
14秒前
眼睛大的松鼠完成签到,获得积分10
14秒前
jiayouya123发布了新的文献求助10
14秒前
16秒前
16秒前
17秒前
维奈克拉应助uncle采纳,获得10
18秒前
陈功人士完成签到,获得积分20
19秒前
踏实白柏完成签到 ,获得积分10
20秒前
慕念完成签到,获得积分10
21秒前
myy完成签到,获得积分10
21秒前
22秒前
22秒前
semon发布了新的文献求助30
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698799
关于积分的说明 14899078
捐赠科研通 4737011
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511067
关于科研通互助平台的介绍 1473605