Deep Supervised Dual Cycle Adversarial Network for Cross-Modal Retrieval

计算机科学 人工智能 判别式 模态(人机交互) 情态动词 特征(语言学) 语义学(计算机科学) 特征学习 代表(政治) 模式识别(心理学) 相似性(几何) 自然语言处理 语义相似性 特征提取 情报检索 机器学习 图像(数学) 哲学 政治学 化学 高分子化学 程序设计语言 法学 政治 语言学
作者
Lei Liao,Meng Yang,Bob Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (2): 920-934 被引量:9
标识
DOI:10.1109/tcsvt.2022.3203247
摘要

Cross-modal retrieval tasks, which are more natural and challenging than traditional retrieval tasks, have attracted increasing interest from researchers in recent years. Although different modalities with the same semantics have some potential relevance, the feature space heterogeneity still seriously weakens the performance of cross-modal retrieval models. To solve this problem, common space-based methods in which multimodal data is projected into a learned common space for similarity measurement have become the mainstream approach for cross-modal retrieval tasks. However, current methods entangle the modality style and semantic content in the common space and neglect to fully explore the semantic and discriminative representation/reconstruction of the semantic content. This often results in an unsatisfactory retrieval performance. To solve these issues, this paper proposes a new Deep Supervised Dual Cycle Adversarial Network (DSDCAN) model based on common space learning. It is composed of two cross-modal cycle GANs, one for the image and one for the text. The proposed cycle GAN model disentangles the semantic content and modality style features by making the data of one modality well reconstructed from the extracted modal style feature and the content feature of the other modality. Then, a discriminative semantic and label loss is proposed by fully considering the category, sample contrast, and label supervision to enhance the semantic discrimination of the common space representation. Besides this, to make the data distribution between two modalities similar, a second-order similarity is presented as a distance measurement of the cross-modal representation in the common space. Extensive experiments have been conducted on the Wikipedia, Pascal Sentence, NUS-WIDE-10k, PKU XMedia, MSCOCO, NUS-WIDE, Flickr30k and MIRFlickr datasets. The results demonstrate that the proposed method can achieve a higher performance than the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肥肠的枣糕啊完成签到,获得积分10
1秒前
cccf发布了新的文献求助10
2秒前
wenran雪发布了新的文献求助10
2秒前
背后的白安完成签到,获得积分20
2秒前
yan发布了新的文献求助20
2秒前
叮叮车发布了新的文献求助10
2秒前
3秒前
tianqi发布了新的文献求助10
4秒前
十三完成签到 ,获得积分10
5秒前
万能图书馆应助冰糖采纳,获得10
5秒前
在水一方应助foxp3采纳,获得30
5秒前
6秒前
SciGPT应助泰勒采纳,获得10
8秒前
杨嘉禧完成签到,获得积分10
8秒前
melody发布了新的文献求助10
9秒前
10秒前
Cary完成签到,获得积分10
10秒前
10秒前
changping应助呼呼采纳,获得10
11秒前
w_完成签到,获得积分10
12秒前
12秒前
13秒前
amberzyc应助背后的白安采纳,获得10
14秒前
朝阳CAAS发布了新的文献求助10
14秒前
CipherSage应助十二平均律采纳,获得30
14秒前
cccf完成签到,获得积分10
16秒前
springovo发布了新的文献求助20
16秒前
追寻向松发布了新的文献求助10
16秒前
爆米花应助火星上眼睛采纳,获得10
18秒前
小马甲应助王者采纳,获得10
18秒前
拼搏绿柏发布了新的文献求助10
19秒前
领导范儿应助李佳钰采纳,获得10
19秒前
11di完成签到,获得积分10
19秒前
义气萝卜头完成签到 ,获得积分10
20秒前
李金奥发布了新的文献求助20
20秒前
21秒前
21秒前
23秒前
爱大美完成签到,获得积分10
24秒前
朝阳CAAS完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5178396
求助须知:如何正确求助?哪些是违规求助? 4366671
关于积分的说明 13595765
捐赠科研通 4217004
什么是DOI,文献DOI怎么找? 2312780
邀请新用户注册赠送积分活动 1311643
关于科研通互助平台的介绍 1259958