Prompt-Based Prototypical Framework for Continual Relation Extraction

遗忘 杠杆(统计) 嵌入 计算机科学 关系(数据库) 关系抽取 任务(项目管理) 人工智能 过程(计算) 利用 自然语言处理 机器学习 数据挖掘 程序设计语言 工程类 心理学 认知心理学 系统工程 计算机安全
作者
Han Zhang,Bin Liang,Min Yang,Hui Wang,Ruifeng Xu
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 2801-2813 被引量:5
标识
DOI:10.1109/taslp.2022.3199655
摘要

Continual relation extraction (CRE) is an important task of continual learning, which aims to learn incessantly emerging new relations between entities from texts. To avoid catastrophically forgetting old relations, some existing research efforts have focused on exploring memory replayed methods by storing typical historical learned instances or embedding all observed relations as prototypes in the episodic memory and replaying them in the subsequent training process. However, they generally fail to exploit the relation knowledge contained in the pre-trained language model (PLM), which could provide enlightening information to the representations of new relations from the known ones. To this end, we investigate the CRE from a novel perspective by generating knowledge-infused relation prototypes to leverage the relational knowledge from PLM with prompt tuning. Specifically, based on the typical samples collected from the historical learned instances with K-means algorithm, we devise novel relational knowledge-infused prompts to elicit relational knowledge from PLM for generating knowledge-infused relation prototypes. Then the prototypes are used to refine the typical examples embedding and calculate the stability-plasticity balance score for adjusting the memory replayed progress. The experimental results show that our method outperforms the state-of-the-art baseline models in CRE. The further extensive analysis presents that the proposed method is robust to memory size, task order, length of the task sequence, and the number of training instances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫迎波完成签到,获得积分10
1秒前
2秒前
耿昊完成签到,获得积分20
3秒前
3秒前
田様应助淡定从凝采纳,获得10
3秒前
4秒前
4秒前
lin发布了新的文献求助10
4秒前
景淮发布了新的文献求助10
5秒前
计小花完成签到,获得积分10
6秒前
木光发布了新的文献求助10
7秒前
豪的花花完成签到,获得积分10
7秒前
隐形曼青应助哎呀采纳,获得10
8秒前
Cam_GuoCH发布了新的文献求助10
8秒前
9秒前
小猫咪发布了新的文献求助10
10秒前
cs完成签到 ,获得积分10
10秒前
13秒前
14秒前
张啸峰发布了新的文献求助10
15秒前
16秒前
老板娘完成签到,获得积分10
16秒前
哎呀完成签到,获得积分10
17秒前
科研通AI5应助二傻不刮痧采纳,获得10
17秒前
xishanmeng发布了新的文献求助30
18秒前
ding应助becl采纳,获得10
18秒前
pooh发布了新的文献求助10
18秒前
科研通AI5应助欣慰冬亦采纳,获得10
19秒前
Amelia完成签到,获得积分10
20秒前
科研混子完成签到 ,获得积分10
20秒前
21秒前
藜藜藜在乎你完成签到 ,获得积分10
21秒前
lan完成签到,获得积分10
21秒前
无花果应助Daixi_Chen采纳,获得10
21秒前
但但发布了新的文献求助10
21秒前
22秒前
e746700020发布了新的文献求助10
23秒前
FashionBoy应助景淮采纳,获得10
24秒前
25秒前
浮生发布了新的文献求助50
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787261
求助须知:如何正确求助?哪些是违规求助? 3332885
关于积分的说明 10257979
捐赠科研通 3048284
什么是DOI,文献DOI怎么找? 1673053
邀请新用户注册赠送积分活动 801616
科研通“疑难数据库(出版商)”最低求助积分说明 760287