Optimal Diafiltration Membrane Cascades Enable Green Recycling of Spent Lithium-Ion Batteries

渗滤 工艺工程 背景(考古学) 锂(药物) 材料科学 废物管理 化学 工程类 无机化学 微滤 生物化学 医学 生物 内分泌学 古生物学
作者
Noah P. Wamble,Elvis A. Eugene,William A. Phillip,Alexander W. Dowling
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:10 (37): 12207-12225 被引量:18
标识
DOI:10.1021/acssuschemeng.2c02862
摘要

Novel processes are urgently needed to recycle critical materials (e.g., cobalt, lithium, nickel, and manganese) from spent lithium-ion batteries (LIBs). These separations are vital both to meet growing global demand and to mitigate a looming e-waste crisis. Currently, to recover cobalt and lithium from spent LIBs, high temperatures and organic solvents are used to separate Co2+ and Li+ in complex leaching and extraction processes. In contrast to using expensive designer ligands or harmful organic solvents, this work reveals that continuous membrane cascades are a promising aqueous-based alternative to recover these critical materials and facilitate their reuse. A superstructure optimization model that designs diafiltration cascades to maximize material recovery and purity as a function of membrane material performance and feed specifications is developed. This approach enables the comparison of candidate membrane materials by rapidly predicting the Pareto optimal trade-offs between the recovery and purity of lithium and cobalt for bespoke cascade designs. For example, the model predicts that, when deployed in an optimized two-stage cascade configuration, a nanofiltration membrane with a modest selectivity of 32 can be used to recover 95% Li+ and 99% Co2+ at 93 and 99.5 wt % purity, respectively. On the basis of analysis of over 1000 Pareto optimal designs, six design heuristics for executing binary separations using staged diafiltration cascades are proposed. Moreover, by evaluating membrane materials in the context of optimized diafiltration processes, this work quantifies the benefits of materials improvements and shows that the greatest research opportunities for membrane-based LIB recycling are at the device and systems scales. More broadly, the optimization models represent a robust framework for identifying the most effective way to deploy emerging materials in integrated process systems. This transformative capability is widely applicable to many of the separations needed to support sustainable global development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HMONEY完成签到,获得积分10
刚刚
1秒前
金樽对月发布了新的文献求助10
1秒前
汉堡包应助ycw7777采纳,获得10
1秒前
2秒前
陈脸圆圆发布了新的文献求助10
2秒前
小二郎应助Ray采纳,获得10
3秒前
4秒前
5秒前
无辜汉堡关注了科研通微信公众号
5秒前
硕硕274发布了新的文献求助10
6秒前
6秒前
节能减排完成签到,获得积分10
7秒前
比耶发布了新的文献求助30
7秒前
邓娇叶发布了新的文献求助10
9秒前
肃肃其羽完成签到 ,获得积分10
11秒前
11秒前
乐乐完成签到,获得积分10
12秒前
硕硕274完成签到,获得积分10
12秒前
winwin完成签到,获得积分10
13秒前
13秒前
徐徐徐发布了新的文献求助10
14秒前
CipherSage应助husky采纳,获得10
16秒前
DD完成签到,获得积分10
17秒前
酸梅完成签到,获得积分10
17秒前
YH完成签到,获得积分10
18秒前
充电宝应助yizhii采纳,获得10
19秒前
冯博伦完成签到,获得积分10
20秒前
kd1412完成签到 ,获得积分10
21秒前
霜鸣发布了新的文献求助10
22秒前
赘婿应助邓娇叶采纳,获得10
23秒前
liziqi发布了新的文献求助10
23秒前
fireflieszy完成签到,获得积分10
25秒前
25秒前
husky给husky的求助进行了留言
25秒前
27秒前
wllom完成签到,获得积分20
29秒前
yizhii发布了新的文献求助10
29秒前
大个应助DuiK采纳,获得10
30秒前
上官若男应助李琦采纳,获得10
31秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Integrated supply chain risk management capabilities and its impact on supply chain demand management - an empirical study 200
Advanced Introduction to Behavioral Law and Economics 200
The acute effects of different percentages of blood flow restrictions on all-out back squat exercise 200
How We Sold Our Future: The Failure to Fight Climate Change 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824674
求助须知:如何正确求助?哪些是违规求助? 3366943
关于积分的说明 10443632
捐赠科研通 3086278
什么是DOI,文献DOI怎么找? 1697891
邀请新用户注册赠送积分活动 816559
科研通“疑难数据库(出版商)”最低求助积分说明 769789