计算机科学
联营
代表(政治)
保险丝(电气)
人工智能
特征学习
机器学习
动作识别
深度学习
模式识别(心理学)
时态数据库
动作(物理)
数据挖掘
班级(哲学)
电气工程
物理
工程类
政治
法学
量子力学
政治学
作者
Nour Elmadany,Yifeng He,Ling Guan
摘要
In this article, we study the problem of video-based action recognition. We improve the action recognition performance by finding an effective temporal and appearance representation. For capturing the temporal representation, we introduce two temporal learning techniques for improving long-term temporal information modeling, specifically Temporal Relational Network and Temporal Second-Order Pooling-based Network. Moreover, we harness the representation using complementary learning techniques, specifically Global-Local Network and Fuse-Inception Network. Performance evaluation on three datasets (UCF101, HMDB-51, and Mini-Kinetics-200) demonstrated the superiority of the proposed framework compared to the 2D Deep ConvNets-based state-of-the-art techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI