亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepMI: Deep multi-lead ECG fusion for identifying myocardial infarction and its occurrence-time

人工智能 计算机科学 机器学习 深度学习 心肌梗塞 特征提取 学习迁移 铅(地质) 特征(语言学) 模式识别(心理学) 人工神经网络 医学 心脏病学 地质学 哲学 地貌学 语言学
作者
Girmaw Abebe Tadesse,Hamza Javed,Komminist Weldemariam,Yong Liu,Jin Liu,Jiyan Chen,Tingting Zhu
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:121: 102192-102192 被引量:38
标识
DOI:10.1016/j.artmed.2021.102192
摘要

Myocardial Infarction (MI) has the highest mortality of all cardiovascular diseases (CVDs). Detection of MI and information regarding its occurrence-time in particular, would enable timely interventions that may improve patient outcomes, thereby reducing the global rise in CVD deaths. Electrocardiogram (ECG) recordings are currently used to screen MI patients. However, manual inspection of ECGs is time-consuming and prone to subjective bias. Machine learning methods have been adopted for automated ECG diagnosis, but most approaches require extraction of ECG beats or consider leads independently of one another. We propose an end-to-end deep learning approach, DeepMI, to classify MI from Normal cases as well as identifying the time-occurrence of MI (defined as Acute, Recent and Old), using a collection of fusion strategies on 12 ECG leads at data-, feature-, and decision-level. In order to minimise computational overhead, we employ transfer learning using existing computer vision networks. Moreover, we use recurrent neural networks to encode the longitudinal information inherent in ECGs. We validated DeepMI on a dataset collected from 17,381 patients, in which over 323,000 samples were extracted per ECG lead. We were able to classify Normal cases as well as Acute, Recent and Old onset cases of MI, with AUROCs of 96.7%, 82.9%, 68.6% and 73.8%, respectively. We have demonstrated a multi-lead fusion approach to detect the presence and occurrence-time of MI. Our end-to-end framework provides flexibility for different levels of multi-lead ECG fusion and performs feature extraction via transfer learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赫枫应助bc采纳,获得400
4秒前
大英留子千早爱音完成签到,获得积分10
6秒前
22秒前
wns发布了新的文献求助10
27秒前
47秒前
wns完成签到,获得积分10
1分钟前
残幻应助Wei采纳,获得10
1分钟前
1分钟前
1分钟前
LYL发布了新的文献求助10
1分钟前
1分钟前
长发飘飘发布了新的文献求助10
1分钟前
努力努力再努力完成签到,获得积分10
2分钟前
李健应助长发飘飘采纳,获得10
2分钟前
无语的保温杯完成签到,获得积分10
2分钟前
田様应助欣欣采纳,获得10
3分钟前
3分钟前
3分钟前
欣欣发布了新的文献求助10
3分钟前
所所应助哈哈哈哈采纳,获得10
3分钟前
3分钟前
哈哈哈哈发布了新的文献求助10
4分钟前
qiandi完成签到 ,获得积分10
4分钟前
4分钟前
纯金金完成签到,获得积分10
4分钟前
哈哈哈哈完成签到,获得积分10
4分钟前
奥特斌完成签到 ,获得积分10
5分钟前
科目三应助sun采纳,获得10
5分钟前
6分钟前
sun发布了新的文献求助10
6分钟前
孙老师完成签到 ,获得积分10
6分钟前
NOME发布了新的文献求助10
6分钟前
6分钟前
sun完成签到,获得积分20
6分钟前
NOME完成签到,获得积分10
7分钟前
7分钟前
wuming发布了新的文献求助20
7分钟前
LL完成签到,获得积分10
7分钟前
科研通AI2S应助Sandy采纳,获得10
8分钟前
欣欣发布了新的文献求助10
8分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788250
求助须知:如何正确求助?哪些是违规求助? 3333704
关于积分的说明 10263128
捐赠科研通 3049553
什么是DOI,文献DOI怎么找? 1673614
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760511