Integrating aesthetic and emotional preferences in social robot design: An affective design approach with Kansei Engineering and Deep Convolutional Generative Adversarial Network

感性工学 背景(考古学) 偏爱 工程设计过程 人机交互 计算机科学 人工智能 产品设计 人气 感知 卷积神经网络 过程(计算) 感性 产品(数学) 工程类 心理学 社会心理学 数学 操作系统 古生物学 统计 神经科学 生物 机械工程 几何学
作者
Yan Gan,Yingrui Ji,Shuo Jiang,Xinxiong Liu,Zhipeng Feng,Yao Li,Yuan Liu
出处
期刊:International Journal of Industrial Ergonomics [Elsevier BV]
卷期号:83: 103128-103128 被引量:97
标识
DOI:10.1016/j.ergon.2021.103128
摘要

Recently, many companies have increasingly emphasized product appearance aesthetics and emotional preference-based design to enhance the competitiveness and popularity of their products. Identifying the interaction between product appearance and customer preferences and mining design information from the interacting context play essential roles in affect-related design approaches. However, due to the complexity of the aesthetic and emotional perception process, obtaining such design information from the interacting context is challenging. This paper proposes an affective design approach based on the Kansei engineering (KE) method and a deep convolutional generative adversarial network (DCGAN) following the research trend of merging KE with computer science techniques in recent years. A case study of the social robot design is conducted to verify the effectiveness of this approach. Appearance aesthetic and emotional preference evaluations are adopted by the KE method first to identify the crucial features in two categories: (1) The physical features of the outer shape, head and color for aesthetics; (2) The emotional features of intelligent, interesting and pleasant for preference perceptions. Based on a manually created social robot image dataset, the DCGAN model is trained to automatically generate novel design images. Then several professional designers are involved to fine-tune the generated images in detail. The experimental results show that the newly designed social robots tend to obtain positive aesthetic and preference evaluations. Practically, such an affective design approach can help industrial design companies identify customers’ psychological requirements and support designers in creating new products innovatively and efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
伊绵好发布了新的文献求助10
2秒前
2秒前
CipherSage应助Wuin采纳,获得10
2秒前
辛勤的刚发布了新的文献求助10
3秒前
6秒前
6秒前
共享精神应助阿航采纳,获得10
7秒前
称心曼安发布了新的文献求助10
8秒前
9秒前
GingerF应助xiaofeixia采纳,获得50
10秒前
万能图书馆应助lyt采纳,获得10
10秒前
Snail6发布了新的文献求助10
10秒前
雪白秋莲完成签到,获得积分10
10秒前
12秒前
12秒前
12秒前
端庄一刀发布了新的文献求助10
12秒前
默默完成签到 ,获得积分10
13秒前
13秒前
五本笔记完成签到 ,获得积分10
13秒前
送不送书7完成签到 ,获得积分10
13秒前
英姑应助加油采纳,获得10
14秒前
14秒前
Hshen发布了新的文献求助10
15秒前
哈哈哈发布了新的文献求助30
16秒前
16秒前
郭京京完成签到 ,获得积分10
16秒前
书篆给书篆的求助进行了留言
17秒前
laola发布了新的文献求助10
17秒前
18秒前
憨坨发布了新的文献求助10
18秒前
yang发布了新的文献求助10
18秒前
任浩发布了新的文献求助10
18秒前
王琳完成签到,获得积分10
18秒前
梧桐梅西发布了新的文献求助10
18秒前
缥缈的绿兰完成签到,获得积分10
19秒前
逸云发布了新的文献求助10
19秒前
20秒前
姜姜完成签到,获得积分10
22秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110558
求助须知:如何正确求助?哪些是违规求助? 3648998
关于积分的说明 11557674
捐赠科研通 3354198
什么是DOI,文献DOI怎么找? 1842816
邀请新用户注册赠送积分活动 909033
科研通“疑难数据库(出版商)”最低求助积分说明 825912