Combining transfer learning and hyperspectral reflectance analysis to assess leaf nitrogen concentration across different plant species datasets

高光谱成像 遥感 可转让性 光谱辐射计 偏最小二乘回归 反射率 环境科学 均方误差 氮气 支持向量机 生物系统 光谱带 计算机科学 数学 人工智能 统计 化学 生物 光学 物理 地质学 罗伊特 有机化学
作者
Liang Wan,Weijun Zhou,Yong He,Thomas Cherico Wanger,Haiyan Cen
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:269: 112826-112826 被引量:90
标识
DOI:10.1016/j.rse.2021.112826
摘要

Accurate estimation of leaf nitrogen concentration (LNC) is critical to characterize ecosystem and plant physiological processes for example in carbon fixation. Remote sensing can capture LNC, while interrelated traits and spectral diversity across plant species prevent development of transferable LNC assessment models based on leaf reflectance. Here, we developed a new transfer learning method by coupling transfer component analysis with the support vector regression, namely TCA-SVR, to transfer LNC assessment models across different plant species. We benchmarked the performance of TCA-SVR against a well-established partial least squares regression (PLSR) model with five remote sensing datasets on 60 plant species measured from three spectroradiometers with varied spectral resolutions and illumination and viewing angles. The result showed that leaf reflectance presented the high spectral diversity in different spectral regions, plant species, and growth stages. The combination of visible (VIS), near infrared (NIR), and shortwave infrared (SWIR) reflectance (e.g. 550–2300 nm) achieved the optimal LNC assessment across all datasets. Results on the testing datasets showed that the transferability of the PLSR models highly depended on the LNC distribution and spectral features, which were associated with the differences in plant species, spectral measurements, and growth conditions between datasets. These differences led to the large variations in LNC and leaf reflectance, which thus produced the overestimations and underestimations of LNC. Compared to the PLSR model, TCA-SVR greatly improved the transferability of the LNC assessment model by reducing the average root mean square error by 36.76%. Further, the implementation of modeling updating can help TCA-SVR learn the features related to the difference in plant species and LNC ranges by transferring samples from the target dataset to the source dataset. Our model updating approach improved the performance of TCA-SVR and only needed 5% of the off-site samples to supplement the source dataset to achieve an effective assessment of LNC. Refining the proposed method with new remote sensing datasets will aid rapid monitoring of plant nitrogen status and may improve carbon‑nitrogen interactions in existing ecosystem models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明天完成签到,获得积分10
刚刚
KJ完成签到,获得积分10
2秒前
蓝莓芝士完成签到 ,获得积分10
10秒前
典雅的纸飞机完成签到 ,获得积分10
10秒前
11秒前
ibo完成签到,获得积分10
12秒前
胖胖橘完成签到 ,获得积分10
12秒前
13秒前
闫鹤文完成签到,获得积分10
13秒前
14秒前
菜鸟学习完成签到 ,获得积分10
15秒前
隐形大白菜真实的钥匙完成签到,获得积分10
16秒前
geold完成签到,获得积分10
16秒前
草莓熊1215完成签到 ,获得积分10
17秒前
不爱喝纯牛奶完成签到,获得积分10
19秒前
复杂的听蓉完成签到,获得积分10
19秒前
20秒前
熊姣凤完成签到 ,获得积分10
21秒前
着急的清完成签到,获得积分10
21秒前
梁小氓完成签到 ,获得积分10
25秒前
keleboys完成签到 ,获得积分10
26秒前
27秒前
女爰舍予完成签到 ,获得积分20
28秒前
爱笑子默完成签到,获得积分10
28秒前
世外完成签到,获得积分10
29秒前
刘一完成签到 ,获得积分10
29秒前
顺利的觅云完成签到,获得积分10
29秒前
31秒前
zhangpeipei完成签到,获得积分10
31秒前
竹本完成签到 ,获得积分10
32秒前
amberzyc应助科研通管家采纳,获得10
34秒前
CR7应助科研通管家采纳,获得20
34秒前
寻找组织应助科研通管家采纳,获得10
35秒前
完美世界应助科研通管家采纳,获得10
35秒前
不倦应助科研通管家采纳,获得10
35秒前
36秒前
36秒前
HHM发布了新的文献求助10
40秒前
41秒前
不想制造学术垃圾的垃圾完成签到 ,获得积分10
44秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212420
求助须知:如何正确求助?哪些是违规求助? 4388601
关于积分的说明 13664165
捐赠科研通 4249133
什么是DOI,文献DOI怎么找? 2331417
邀请新用户注册赠送积分活动 1329109
关于科研通互助平台的介绍 1282517