Machine Learning Screening of Metal-Ion Battery Electrode Materials

电压 电极 电池(电) 法拉第效率 材料科学 体积热力学 稳健性(进化) 储能 计算机科学 人工神经网络 纳米技术 离子 数码产品 机器学习 电化学 电气工程 化学 热力学 工程类 物理 有机化学 功率(物理) 物理化学 生物化学 基因
作者
Isaiah A. Moses,Rajendra P. Joshi,Burak Özdemir,Neeraj Kumar,Jesse Eickholt,Verónica Barone
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (45): 53355-53362 被引量:75
标识
DOI:10.1021/acsami.1c04627
摘要

Rechargeable batteries provide crucial energy storage systems for renewable energy sources, as well as consumer electronics and electrical vehicles. There are a number of important parameters that determine the suitability of electrode materials for battery applications, such as the average voltage and the maximum specific capacity which contribute to the overall energy density. Another important performance criterion for battery electrode materials is their volume change upon charging and discharging, which contributes to determine the cyclability, Coulombic efficiency, and safety of a battery. In this work, we present deep neural network regression machine learning models (ML), trained on data obtained from the Materials Project database, for predicting average voltages and volume change upon charging and discharging of electrode materials for metal-ion batteries. Our models exhibit good performance as measured by the average mean absolute error obtained from a 10-fold cross-validation, as well as on independent test sets. We further assess the robustness of our ML models by investigating their screening potential beyond the training database. We produce Na-ion electrodes by systematically replacing Li-ions in the original database by Na-ions and, then, selecting a set of 22 electrodes that exhibit a good performance in energy density, as well as small volume variations upon charging and discharging, as predicted by the machine learning model. The ML predictions for these materials are then compared to quantum-mechanics based calculations. Our results reaffirm the significant role of machine learning techniques in the exploration of materials for battery applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮白云完成签到 ,获得积分10
1秒前
2秒前
1111发布了新的文献求助10
2秒前
huhu完成签到,获得积分10
2秒前
我姓孙完成签到,获得积分20
2秒前
inshialla完成签到 ,获得积分10
3秒前
MJ完成签到,获得积分10
3秒前
3秒前
风中琦完成签到 ,获得积分10
3秒前
YYL完成签到 ,获得积分10
3秒前
4秒前
xiaohan完成签到,获得积分10
4秒前
DAJI完成签到,获得积分10
4秒前
Niar完成签到 ,获得积分10
5秒前
64658完成签到,获得积分10
5秒前
zhangfan发布了新的文献求助10
5秒前
论文狗发布了新的文献求助10
6秒前
6秒前
fang20130608发布了新的文献求助10
7秒前
我姓孙发布了新的文献求助10
7秒前
科目三应助粘豆包采纳,获得10
7秒前
JamesPei应助xixi采纳,获得10
7秒前
在水一方应助mumu采纳,获得10
7秒前
kingwill应助隔壁家采纳,获得20
7秒前
8秒前
xiixix发布了新的文献求助10
8秒前
crazy发布了新的文献求助10
9秒前
JamesPei应助Spring采纳,获得30
9秒前
9秒前
田様应助Li656943234采纳,获得10
9秒前
桔梗完成签到,获得积分10
10秒前
zhangfan完成签到,获得积分10
11秒前
啦啊啦啦啦应助111111采纳,获得20
11秒前
木木子发布了新的文献求助10
11秒前
zm发布了新的文献求助10
11秒前
科研助手6应助科研小白采纳,获得10
11秒前
12秒前
春天完成签到 ,获得积分10
12秒前
瑞_完成签到,获得积分10
12秒前
李明发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789121
求助须知:如何正确求助?哪些是违规求助? 3334252
关于积分的说明 10268466
捐赠科研通 3050588
什么是DOI,文献DOI怎么找? 1674046
邀请新用户注册赠送积分活动 802471
科研通“疑难数据库(出版商)”最低求助积分说明 760621