清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning-based personalized subthalamic biomarkers predict ON-OFF levodopa states in Parkinson patients

局部场电位 帕金森病 电生理学 神经生理学 机器学习 丘脑底核 神经科学 左旋多巴 计算机科学 人工智能 医学 脑深部刺激 物理医学与康复 心理学 疾病 内科学
作者
Daniel Sand,Pnina Rappel,Odeya Marmor,Atira Bick,David Arkadir,Bao-Liang Lu,Hagai Bergman,Zvi Israel,Renana Eitan
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (4): 046058-046058 被引量:6
标识
DOI:10.1088/1741-2552/abfc1d
摘要

Abstract Objective. Adaptive deep brain stimulation (aDBS) based on subthalamic nucleus (STN) electrophysiology has recently been proposed to improve clinical outcomes of DBS for Parkinson’s disease (PD) patients. Many current models for aDBS are based on one or two electrophysiological features of STN activity, such as beta or gamma activity. Although these models have shown interesting results, we hypothesized that an aDBS model that includes many STN activity parameters will yield better clinical results. The objective of this study was to investigate the most appropriate STN neurophysiological biomarkers, detectable over long periods of time, that can predict OFF and ON levodopa states in PD patients. Approach. Long-term local field potentials (LFPs) were recorded from eight STNs (four PD patients) during 92 recording sessions (44 OFF and 48 ON levodopa states), over a period of 3–12 months. Electrophysiological analysis included the power of frequency bands, band power ratio and burst features. A total of 140 engineered features was extracted for 20 040 epochs (each epoch lasting 5 s). Based on these engineered features, machine learning (ML) models classified LFPs as OFF vs ON levodopa states. Main results. Beta and gamma band activity alone poorly predicts OFF vs ON levodopa states, with an accuracy of 0.66 and 0.64, respectively. Group ML analysis slightly improved prediction rates, but personalized ML analysis, based on individualized engineered electrophysiological features, were markedly better, predicting OFF vs ON levodopa states with an accuracy of 0.8 for support vector machine learning models. Significance. We showed that individual patients have unique sets of STN neurophysiological biomarkers that can be detected over long periods of time. ML models revealed that personally classified engineered features most accurately predict OFF vs ON levodopa states. Future development of aDBS for PD patients might include personalized ML algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袁雪蓓完成签到 ,获得积分10
5秒前
九天完成签到 ,获得积分10
5秒前
午后狂睡完成签到 ,获得积分10
34秒前
抚琴祛魅完成签到 ,获得积分10
51秒前
Ricardo完成签到 ,获得积分10
1分钟前
洒家完成签到 ,获得积分10
1分钟前
chichenglin完成签到 ,获得积分10
1分钟前
QCB完成签到 ,获得积分10
1分钟前
哈哈呀完成签到 ,获得积分10
1分钟前
zzgpku完成签到,获得积分0
2分钟前
Tong完成签到,获得积分0
2分钟前
jlwang完成签到,获得积分10
2分钟前
似水流年完成签到 ,获得积分10
2分钟前
John完成签到 ,获得积分10
2分钟前
ylyao完成签到 ,获得积分10
2分钟前
加贝完成签到 ,获得积分10
2分钟前
扶我起来写论文完成签到 ,获得积分10
2分钟前
蛋妮完成签到 ,获得积分10
2分钟前
wyh295352318完成签到 ,获得积分10
3分钟前
DJ_Tokyo完成签到,获得积分10
3分钟前
三人水明完成签到 ,获得积分10
3分钟前
研究生完成签到 ,获得积分10
3分钟前
今后应助微风低回采纳,获得10
3分钟前
秋夜临完成签到,获得积分10
3分钟前
Axs完成签到,获得积分10
3分钟前
kittency完成签到 ,获得积分10
3分钟前
晚意完成签到 ,获得积分10
4分钟前
lanxinge完成签到 ,获得积分10
4分钟前
Eric800824完成签到 ,获得积分10
4分钟前
liuzhigang完成签到 ,获得积分10
4分钟前
ding应助科研通管家采纳,获得10
5分钟前
开心夏旋完成签到 ,获得积分10
5分钟前
CherylZhao完成签到,获得积分10
5分钟前
勤恳的书文完成签到 ,获得积分10
5分钟前
5分钟前
微风低回发布了新的文献求助10
5分钟前
宇文非笑完成签到 ,获得积分0
5分钟前
keyan123完成签到 ,获得积分10
5分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
5分钟前
Square完成签到,获得积分10
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782710
求助须知:如何正确求助?哪些是违规求助? 3328095
关于积分的说明 10234416
捐赠科研通 3043042
什么是DOI,文献DOI怎么找? 1670442
邀请新用户注册赠送积分活动 799698
科研通“疑难数据库(出版商)”最低求助积分说明 758994