Rotation Awareness Based Self-Supervised Learning for SAR Target Recognition With Limited Training Samples

自动目标识别 计算机科学 人工智能 合成孔径雷达 水准点(测量) 模式识别(心理学) 任务(项目管理) 旋转(数学) 一般化 特征(语言学) 目标捕获 特征提取 计算机视觉 机器学习 数学 哲学 经济 数学分析 管理 地理 语言学 大地测量学
作者
Zaidao Wen,Zhunga Liu,Shuai Zhang,Quan Pan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 7266-7279 被引量:55
标识
DOI:10.1109/tip.2021.3104179
摘要

The scattering signatures of a synthetic aperture radar (SAR) target image will be highly sensitive to different azimuth angles/poses, which aggravates the demand for training samples in learning-based SAR image automatic target recognition (ATR) algorithms, and makes SAR ATR a more challenging task. This paper develops a novel rotation awareness-based learning framework termed RotANet for SAR ATR under the condition of limited training samples. First, we propose an encoding scheme to characterize the rotational pattern of pose variations among intra-class targets. These targets will constitute several ordered sequences with different rotational patterns via permutations. By further exploiting the intrinsic relation constraints among these sequences as the supervision, we develop a novel self-supervised task which makes RotANet learn to predict the rotational pattern of a baseline sequence and then autonomously generalize this ability to the others without external supervision. Therefore, this task essentially contains a learning and self-validation process to achieve human-like rotation awareness, and it serves as a task-induced prior to regularize the learned feature domain of RotANet in conjunction with an individual target recognition task to improve the generalization ability of the features. Extensive experiments on moving and stationary target acquisition and recognition benchmark database demonstrate the effectiveness of our proposed framework. Compared with other state-of-the-art SAR ATR algorithms, RotANet will remarkably improve the recognition accuracy especially in the case of very limited training samples without performing any other data augmentation strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aK3完成签到,获得积分20
1秒前
丘比特应助STAN采纳,获得10
1秒前
1秒前
思源应助嗯哼采纳,获得10
1秒前
阳光雨发布了新的文献求助10
2秒前
难过风华完成签到,获得积分10
3秒前
aK3发布了新的文献求助10
4秒前
cumtxzs发布了新的文献求助10
4秒前
帅气冰珍发布了新的文献求助10
5秒前
大模型应助健忘的板凳采纳,获得10
6秒前
8秒前
领导范儿应助沉默的芒果采纳,获得10
8秒前
浮生发布了新的文献求助10
8秒前
蜗牛完成签到,获得积分10
9秒前
在水一方应助帅气冰珍采纳,获得10
9秒前
英姑应助帅帅中带点小坏采纳,获得10
10秒前
10秒前
乐乐应助bingsu108采纳,获得10
10秒前
Ava应助cumtxzs采纳,获得10
11秒前
远山笑你完成签到 ,获得积分10
12秒前
lianmeiliu发布了新的文献求助10
13秒前
13秒前
15秒前
adi完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
小W完成签到 ,获得积分10
22秒前
23秒前
24秒前
lqqqq发布了新的文献求助10
26秒前
27秒前
27秒前
bububusbu完成签到,获得积分10
29秒前
29秒前
30秒前
Hello应助谁家那小谁采纳,获得10
31秒前
啊哒吸哇完成签到,获得积分10
31秒前
黄青青完成签到,获得积分10
32秒前
最爱吃的柠檬酸完成签到,获得积分10
37秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842878
求助须知:如何正确求助?哪些是违规求助? 3384881
关于积分的说明 10537922
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710326
邀请新用户注册赠送积分活动 823582
科研通“疑难数据库(出版商)”最低求助积分说明 774149