已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hybrid Car-Following Strategy Based on Deep Deterministic Policy Gradient and Cooperative Adaptive Cruise Control

巡航控制 自适应控制 计算机科学 控制理论(社会学) 巡航 控制(管理) 控制工程 工程类 航空航天工程 人工智能
作者
Ruidong Yan,Rui Jiang,Bin Jia,Jin Huang,Diange Yang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 2816-2824 被引量:46
标识
DOI:10.1109/tase.2021.3100709
摘要

Deep deterministic policy gradient (DDPG)-based car-following strategy can break through the constraints of the differential equation model due to the ability of exploration on complex environments. However, the car-following performance of DDPG is usually degraded by unreasonable reward function design, insufficient training, and low sampling efficiency. In order to solve this kind of problem, a hybrid car-following strategy based on DDPG and cooperative adaptive cruise control (CACC) is proposed. First, the car-following process is modeled as the Markov decision process to calculate CACC and DDPG simultaneously at each frame. Given a current state, two actions are obtained from CACC and DDPG, respectively. Then, an optimal action, corresponding to the one offering a larger reward, is chosen as the output of the hybrid strategy. Meanwhile, a rule is designed to ensure that the change rate of acceleration is smaller than the desired value. Therefore, the proposed strategy not only guarantees the basic performance of car-following through CACC but also makes full use of the advantages of exploration on complex environments via DDPG. Finally, simulation results show that the car-following performance of the proposed strategy is improved compared with that of DDPG and CACC. Note to Practitioners—This article presents a new car-following strategy, which avoids the impact of deep deterministic policy gradient (DDPG) performance degradation on the system. In the proposed strategy, DDPG is replaced with cooperative adaptive cruise control (CACC) when the performance of DDPG is worse than that of CACC. Meanwhile, a switching rule is designed to guarantee that the change rate of acceleration is smaller than the threshold. Simulation results show that the performance of hybrid car-following strategy has been improved compared with that of only using CACC or DDPG. Moreover, the proposed strategy has the advantages of low computational burden, high real-time performance, and good scalability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助11采纳,获得10
刚刚
李爱国应助11采纳,获得10
刚刚
搜集达人应助11采纳,获得10
刚刚
Ava应助11采纳,获得10
刚刚
科研达人发布了新的文献求助10
2秒前
3秒前
5秒前
眼里有光的阿墨完成签到 ,获得积分10
5秒前
6秒前
6秒前
FashionBoy应助wakao采纳,获得10
8秒前
沉静的寒烟关注了科研通微信公众号
9秒前
10秒前
无私的梦凡完成签到,获得积分10
10秒前
10秒前
思源应助科研通管家采纳,获得10
13秒前
14秒前
14秒前
18秒前
20秒前
21秒前
wakao发布了新的文献求助10
21秒前
23秒前
欢喜依霜发布了新的文献求助30
24秒前
失眠问晴发布了新的文献求助10
26秒前
若水完成签到 ,获得积分10
27秒前
28秒前
29秒前
32秒前
33秒前
QIN发布了新的文献求助10
34秒前
小二发布了新的文献求助10
34秒前
neilphilosci完成签到 ,获得积分10
35秒前
36秒前
剑指东方是为谁应助小L采纳,获得10
37秒前
41秒前
仁爱的怜南完成签到 ,获得积分10
41秒前
卡牌大师发布了新的文献求助10
41秒前
mjsdx完成签到 ,获得积分10
42秒前
44秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784673
求助须知:如何正确求助?哪些是违规求助? 3329836
关于积分的说明 10243563
捐赠科研通 3045204
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800480
科研通“疑难数据库(出版商)”最低求助积分说明 759416