突变
非生物胁迫
生物
清脆的
突变体
植物
遗传学
基因
非生物成分
拟南芥
野生型
古生物学
作者
Tayebeh Kakeshpour,Tej Man Tamang,Gergely Motolai,Zachary Wayne Fleming,Jungeun Park,Qingyu Wu,Sunghun Park
摘要
Sessile organisms such as plants have adopted diverse reactive oxygen species (ROS) scavenging mechanisms to mitigate damage under abiotic stress conditions. Though CGFS-type glutaredoxin (GRX) genes are important regulators of ROS homeostasis, each of their functions in crop plants have not yet been well understood. We performed a targeted mutagenesis analysis of four CGFS-type GRXs (SlGRXS14, SlGRXS15, SlGRXS16, and SlGRXS17) in tomato plants (Solanum lycopersicum) using a multiplex clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system and found that Slgrxs mutants were more sensitive to various abiotic stresses compared with the wild-type tomatoes. Slgrxs15 mutants were embryonic lethal. Single, double, and triple combinations of Slgrxs14, 16, and 17 mutants were examined under heat, chilling, drought, heavy metal toxicity, nutrient deficiency, and short photoperiod stresses. Slgrxs14 and 17 mutants showed hypersensitivity to almost all stresses while Slgrxs16 mutants were affected by chilling stress and showed milder sensitivity to other stresses. Additionally, Slgrxs14 and 17 mutants showed delayed flowering time. Our results indicate that the CGFS-type SlGRXs have specific roles against abiotic stresses, providing valuable resources to develop tomato and, possibly, other crop species that are tolerant to multiple abiotic stresses by genetic engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI