MAPK/ERK通路
脐静脉
多糖
生物
血管生成
p38丝裂原活化蛋白激酶
细胞
细胞迁移
内皮干细胞
细胞生物学
生物化学
激酶
体外
癌症研究
作者
Zedong Jiang,Pingping He,Ling Wu,Gang Yu,Yanbing Zhu,Lijun Li,Hui Ni,Tatsuya Oda,Qingbiao Li
标识
DOI:10.1016/j.ijbiomac.2021.03.123
摘要
In this study, we evaluated the structural characteristics and novel biological activity of polysaccharide purified from red seaweed Bangia fusco-purpurea (BFP). Methylation, GC/MS, and NMR analyses suggested that the proposal repeating structure of BFP was →3)-β-D-Galp-(1→, →3)-β-D-Galp6S-(1 → 4)-α-D-Galp-(1→, →4)-α-D-Galp-(1 → 4)-α-L-AnGalp-(1 → 3)-β-D-Galp-(1→, and →4)-α-D-Galp-(1 → at a molar ratio of 13: 1: 1: 1. Interestingly, BFP exhibited significant cell migration- and tube formation-promoting activities toward human umbilical vein endothelial cells (HUVECs) in a concentration-dependent manner via increasing the N-cadherin expression and decreasing the E-cadherin expression. Furthermore, ERK and p38 mitogen-activated protein kinase (MAPK) specific inhibitors exhibited potent inhibitory effects on BFP-induced cell migration but not JNK MAPK inhibitor, suggesting ERK and p38 MAPK signaling pathways were mainly involved in BFP-induced cell migration. Moreover, vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor significantly inhibited BFP-induced cell migration and tube formation in HUVECs, suggesting VEGF receptors of HUVECs were involved in the pro-angiogenesis activity of BFP. This is the first report that a sulfated polysaccharide possessing a pro-angiogenic effect was obtained from red seaweed. Our findings are expected to promote the practical use of red seaweed B. fusco-purpurea and its polysaccharide in the development of the in vitro and ex vivo vascular endothelial cell-based cell therapy products.
科研通智能强力驱动
Strongly Powered by AbleSci AI