Co-designing electronics with microfluidics for more sustainable cooling

数码产品 电力电子 水冷 电子设备冷却 微通道 小型化 纳米技术 被动冷却 计算机冷却 机械工程 工程物理 工程类 环境科学 热的 材料科学 电子设备和系统的热管理 电气工程 物理 热力学 电压
作者
Remco van Erp,Reza Soleimanzadeh,Luca Nela,Georgios Kampitsis,Elison Matioli
出处
期刊:Nature [Nature Portfolio]
卷期号:585 (7824): 211-216 被引量:722
标识
DOI:10.1038/s41586-020-2666-1
摘要

Thermal management is one of the main challenges for the future of electronics1–5. With the ever-increasing rate of data generation and communication, as well as the constant push to reduce the size and costs of industrial converter systems, the power density of electronics has risen6. Consequently, cooling, with its enormous energy and water consumption, has an increasingly large environmental impact7,8, and new technologies are needed to extract the heat in a more sustainable way—that is, requiring less water and energy9. Embedding liquid cooling directly inside the chip is a promising approach for more efficient thermal management5,10,11. However, even in state-of-the-art approaches, the electronics and cooling are treated separately, leaving the full energy-saving potential of embedded cooling untapped. Here we show that by co-designing microfluidics and electronics within the same semiconductor substrate we can produce a monolithically integrated manifold microchannel cooling structure with efficiency beyond what is currently available. Our results show that heat fluxes exceeding 1.7 kilowatts per square centimetre can be extracted using only 0.57 watts per square centimetre of pumping power. We observed an unprecedented coefficient of performance (exceeding 10,000) for single-phase water-cooling of heat fluxes exceeding 1 kilowatt per square centimetre, corresponding to a 50-fold increase compared to straight microchannels, as well as a very high average Nusselt number of 16. The proposed cooling technology should enable further miniaturization of electronics, potentially extending Moore’s law and greatly reducing the energy consumption in cooling of electronics. Furthermore, by removing the need for large external heat sinks, this approach should enable the realization of very compact power converters integrated on a single chip. Cooling efficiency is greatly increased by directly embedding liquid cooling into electronic chips, using microfluidics-based heat sinks that are designed in conjunction with the electronics within the same semiconductor substrate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助50
1秒前
威威完成签到,获得积分10
1秒前
1秒前
斯文败类应助高工采纳,获得10
2秒前
狗大王发布了新的文献求助10
3秒前
个性元枫应助麦子采纳,获得10
3秒前
3秒前
生动茗茗完成签到,获得积分10
4秒前
5秒前
快乐小子发布了新的文献求助10
5秒前
5秒前
莫易槐完成签到,获得积分20
5秒前
5秒前
5秒前
Cassiopiea19完成签到,获得积分10
6秒前
无花果应助GY916采纳,获得10
6秒前
太难了发布了新的文献求助10
6秒前
lll发布了新的文献求助10
7秒前
zz完成签到 ,获得积分10
7秒前
龙在天涯完成签到,获得积分0
7秒前
8秒前
凳子3333完成签到,获得积分10
8秒前
小杨发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助读书的时候采纳,获得10
8秒前
9秒前
wysky37发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
稳重鸡翅发布了新的文献求助10
12秒前
小石头完成签到,获得积分10
13秒前
14秒前
高工发布了新的文献求助10
14秒前
14秒前
14秒前
美满筮发布了新的文献求助10
14秒前
fatcat完成签到,获得积分10
14秒前
binbin完成签到,获得积分10
15秒前
田様应助清图采纳,获得10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4024584
求助须知:如何正确求助?哪些是违规求助? 3564378
关于积分的说明 11345458
捐赠科研通 3295611
什么是DOI,文献DOI怎么找? 1815255
邀请新用户注册赠送积分活动 889785
科研通“疑难数据库(出版商)”最低求助积分说明 813154