Co-designing electronics with microfluidics for more sustainable cooling

数码产品 电力电子 水冷 电子设备冷却 微通道 小型化 纳米技术 被动冷却 计算机冷却 机械工程 工程物理 工程类 环境科学 热的 材料科学 电子设备和系统的热管理 电气工程 物理 热力学 电压
作者
Remco van Erp,Reza Soleimanzadeh,Luca Nela,Georgios Kampitsis,Elison Matioli
出处
期刊:Nature [Nature Portfolio]
卷期号:585 (7824): 211-216 被引量:768
标识
DOI:10.1038/s41586-020-2666-1
摘要

Thermal management is one of the main challenges for the future of electronics1–5. With the ever-increasing rate of data generation and communication, as well as the constant push to reduce the size and costs of industrial converter systems, the power density of electronics has risen6. Consequently, cooling, with its enormous energy and water consumption, has an increasingly large environmental impact7,8, and new technologies are needed to extract the heat in a more sustainable way—that is, requiring less water and energy9. Embedding liquid cooling directly inside the chip is a promising approach for more efficient thermal management5,10,11. However, even in state-of-the-art approaches, the electronics and cooling are treated separately, leaving the full energy-saving potential of embedded cooling untapped. Here we show that by co-designing microfluidics and electronics within the same semiconductor substrate we can produce a monolithically integrated manifold microchannel cooling structure with efficiency beyond what is currently available. Our results show that heat fluxes exceeding 1.7 kilowatts per square centimetre can be extracted using only 0.57 watts per square centimetre of pumping power. We observed an unprecedented coefficient of performance (exceeding 10,000) for single-phase water-cooling of heat fluxes exceeding 1 kilowatt per square centimetre, corresponding to a 50-fold increase compared to straight microchannels, as well as a very high average Nusselt number of 16. The proposed cooling technology should enable further miniaturization of electronics, potentially extending Moore’s law and greatly reducing the energy consumption in cooling of electronics. Furthermore, by removing the need for large external heat sinks, this approach should enable the realization of very compact power converters integrated on a single chip. Cooling efficiency is greatly increased by directly embedding liquid cooling into electronic chips, using microfluidics-based heat sinks that are designed in conjunction with the electronics within the same semiconductor substrate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dongdongqiang完成签到,获得积分10
刚刚
加油努力发布了新的文献求助10
刚刚
livo完成签到,获得积分10
1秒前
mxq完成签到,获得积分10
1秒前
糊涂的万发布了新的文献求助30
2秒前
3秒前
流星雨完成签到,获得积分10
4秒前
4秒前
安详的琳完成签到 ,获得积分10
6秒前
7秒前
樱桃儿发布了新的文献求助10
7秒前
wyh2025完成签到 ,获得积分10
7秒前
8秒前
8秒前
李子完成签到 ,获得积分20
8秒前
大大完成签到,获得积分20
9秒前
wyc发布了新的文献求助10
10秒前
嘟嘟嘟完成签到,获得积分20
10秒前
10秒前
星辰大海应助guagua采纳,获得10
11秒前
小栩发布了新的文献求助10
11秒前
王鹏达发布了新的文献求助50
11秒前
12秒前
李健应助欢迎欢迎采纳,获得20
12秒前
13秒前
李昕123发布了新的文献求助10
15秒前
乐多完成签到,获得积分10
16秒前
传奇3应助顺顺顺采纳,获得10
16秒前
鸣笛应助十you八九采纳,获得10
17秒前
yue发布了新的文献求助10
17秒前
tsttst发布了新的文献求助10
18秒前
aaaaaa发布了新的文献求助10
19秒前
科研通AI5应助大大采纳,获得10
19秒前
执着谷兰应助wuhu采纳,获得10
19秒前
19秒前
20秒前
21秒前
Orange应助ff采纳,获得10
21秒前
李健的小迷弟应助Tobiuo采纳,获得10
23秒前
dongdongqiang发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4511065
求助须知:如何正确求助?哪些是违规求助? 3956932
关于积分的说明 12267110
捐赠科研通 3617909
什么是DOI,文献DOI怎么找? 1990861
邀请新用户注册赠送积分活动 1027117
科研通“疑难数据库(出版商)”最低求助积分说明 918447