A New Framework for Automatic Detection of Patients With Mild Cognitive Impairment Using Resting-State EEG Signals

脑电图 支持向量机 稳健性(进化) 特征提取 痴呆 极限学习机 计算机科学 模式识别(心理学) 机器学习 心理学 人工智能 医学 人工神经网络 生物化学 化学 疾病 病理 精神科 基因
作者
Siuly Siuly,Ömer Faruk Alçin,Enamul Kabir,Abdulkadir Şengür,Hua Wang,Yanchun Zhang,Frank Whittaker
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 1966-1976 被引量:118
标识
DOI:10.1109/tnsre.2020.3013429
摘要

Mild cognitive impairment (MCI) can be an indicator representing the early stage of Alzheimier's disease (AD). AD, which is the most common form of dementia, is a major public health problem worldwide. Efficient detection of MCI is essential to identify the risks of AD and dementia. Currently Electroencephalography (EEG) is the most popular tool to investigate the presenence of MCI biomarkers. This study aims to develop a new framework that can use EEG data to automatically distinguish MCI patients from healthy control subjects. The proposed framework consists of noise removal (baseline drift and power line interference noises), segmentation, data compression, feature extraction, classification, and performance evaluation. This study introduces Piecewise Aggregate Approximation (PAA) for compressing massive volumes of EEG data for reliable analysis. Permutation entropy (PE) and auto-regressive (AR) model features are investigated to explore whether the changes in EEG signals can effectively distinguish MCI from healthy control subjects. Finally, three models are developed based on three modern machine learning techniques: Extreme Learning Machine (ELM); Support Vector Machine (SVM) and K-Nearest Neighbours (KNN) for the obtained feature sets. Our developed models are tested on a publicly available MCI EEG database and the robustness of our models is evaluated by using a 10-fold cross validation method. The results show that the proposed ELM based method achieves the highest classification accuracy (98.78%) with lower execution time (0.281 seconds) and also outperforms the existing methods. The experimental results suggest that our proposed framework could provide a robust biomarker for efficient detection of MCI patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
wei完成签到,获得积分20
3秒前
DUAN发布了新的文献求助10
4秒前
tt发布了新的文献求助10
5秒前
guo应助SiO2采纳,获得10
7秒前
7秒前
hahaha发布了新的文献求助10
8秒前
不想干活应助chao采纳,获得10
10秒前
深情安青应助chao采纳,获得10
10秒前
三十六完成签到 ,获得积分10
11秒前
12秒前
yaoyao发布了新的文献求助10
12秒前
幸福大白发布了新的文献求助10
13秒前
帆帆发布了新的文献求助20
13秒前
14秒前
Akim应助hahaha采纳,获得10
15秒前
早睡能长个完成签到,获得积分10
15秒前
酷波er应助zuofighting采纳,获得10
15秒前
妮妮完成签到,获得积分10
16秒前
chao完成签到,获得积分10
17秒前
橙子完成签到 ,获得积分10
17秒前
SciGPT应助小xy采纳,获得10
18秒前
晚风发布了新的文献求助10
18秒前
妮妮发布了新的文献求助10
19秒前
24秒前
纨绔完成签到 ,获得积分10
28秒前
29秒前
wei关注了科研通微信公众号
31秒前
32秒前
33秒前
自由寻冬完成签到 ,获得积分10
35秒前
37秒前
nilu发布了新的文献求助10
37秒前
37秒前
CipherSage应助cccc采纳,获得20
38秒前
38秒前
38秒前
欢喜寄风发布了新的文献求助10
40秒前
Cyber_relic发布了新的文献求助10
42秒前
孟辛发布了新的文献求助10
43秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
探索化学的奥秘:电子结构方法 400
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171754
求助须知:如何正确求助?哪些是违规求助? 3707290
关于积分的说明 11696526
捐赠科研通 3392569
什么是DOI,文献DOI怎么找? 1860937
邀请新用户注册赠送积分活动 920610
科研通“疑难数据库(出版商)”最低求助积分说明 832768