Normalization of underwater laser-induced breakdown spectroscopy using acoustic signals measured by a hydrophone

规范化(社会学) 水听器 水下 激光器 声学 材料科学 光谱学 光学 激光诱导击穿光谱 物理 地质学 海洋学 量子力学 社会学 人类学
作者
Fuzhen Huang,Ye Tian,Ying Li,Wangquan Ye,Yuan Lu,Jinjia Guo,Ronger Zheng
出处
期刊:Applied Optics [The Optical Society]
卷期号:60 (6): 1595-1595 被引量:32
标识
DOI:10.1364/ao.413853
摘要

Laser-induced breakdown spectroscopy (LIBS) signals in water always suffer strong pulse-to-pulse fluctuations that result in poor stability of the spectrum. In this work, a spectrum normalization method based on acoustic signals measured by a hydrophone immersed in water was developed and compared with laser energy normalization. The characteristics of the acoustic signals were studied first, and the correlations between the acoustic signals and LIBS spectra were analyzed. It showed that the spectral line intensity has a better linear relationship with the acoustic energy than with the laser energy. Consequently, the acoustic normalization exhibited better performance on the reduction of LIBS spectral fluctuation versus laser energy normalization. Calibration curves of Mn, Sr, and Li were then built to assess the analytical performance of the proposed acoustic normalization method. Compared with the original spectral data, the average RSD_C values of all analyte elements were significantly reduced from 5.00% to 3.18%, and the average RSD_P values were reduced from 5.09% to 3.28%, by using the acoustic normalization method. These results suggest that the stability of underwater LIBS can be clearly improved by using acoustic signals for normalization, and acoustic normalization works more efficiently than laser energy normalization. This work provides a simple and cost-effective external acoustic normalization method for underwater LIBS applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
的风格发布了新的文献求助10
刚刚
桐桐应助墨斗在拼搏采纳,获得10
刚刚
Dr.c发布了新的文献求助10
1秒前
2秒前
Noah完成签到 ,获得积分0
2秒前
xieyuanxing发布了新的文献求助10
2秒前
2秒前
奋斗土豆关注了科研通微信公众号
2秒前
Zx_1993应助anny2022采纳,获得10
4秒前
情怀应助三个地方户籍卡采纳,获得10
4秒前
limecafe发布了新的文献求助10
4秒前
4秒前
小盆呐完成签到,获得积分10
5秒前
执着烧鹅完成签到 ,获得积分10
5秒前
6秒前
8秒前
仁爱的谷南完成签到,获得积分10
8秒前
11发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
Dr.c完成签到,获得积分10
10秒前
Hello应助老迟到的芹菜采纳,获得10
11秒前
11秒前
12秒前
14秒前
14秒前
15秒前
lijun发布了新的文献求助10
16秒前
王森完成签到,获得积分10
16秒前
毕奥萨伐尔完成签到,获得积分10
16秒前
大个应助4737采纳,获得10
17秒前
darcy发布了新的文献求助10
17秒前
17秒前
江小小发布了新的文献求助10
18秒前
18秒前
18秒前
19秒前
19秒前
11完成签到,获得积分10
19秒前
香蕉觅云应助清脆靳采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526879
求助须知:如何正确求助?哪些是违规求助? 4616832
关于积分的说明 14556118
捐赠科研通 4555346
什么是DOI,文献DOI怎么找? 2496326
邀请新用户注册赠送积分活动 1476628
关于科研通互助平台的介绍 1448142