亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiologic-Radiomic Machine Learning Models for Differentiation of Benign and Malignant Solid Renal Masses: Comparison With Expert-Level Radiologists

医学 肾细胞癌 嫌色细胞 麦克内马尔试验 放射科 清除单元格 回顾性队列研究 病理 数学 统计
作者
Xueying Sun,Qiu-Xia Feng,Xun Xu,Jing Zhang,Feipeng Zhu,Yan-Hao Yang,Yu‐Dong Zhang
出处
期刊:American Journal of Roentgenology [American Roentgen Ray Society]
卷期号:214 (1): W44-W54 被引量:70
标识
DOI:10.2214/ajr.19.21617
摘要

OBJECTIVE. The objective of our study was to compare the performance of radiologicradiomic machine learning (ML) models and expert-level radiologists for differentiation of benign and malignant solid renal masses using contrast-enhanced CT examinations. MATERIALS AND METHODS. This retrospective study included a cohort of 254 renal cell carcinomas (RCCs) (190 clear cell RCCs [ccRCCs], 38 chromophobe RCCs [chrRCCs], and 26 papillary RCCs [pRCCs]), 26 fat-poor angioleiomyolipomas, and 10 oncocytomas with preoperative CT examinations. Lesions identified by four expert-level radiologists (> 3000 genitourinary CT and MRI studies) were manually segmented for radiologicradiomic analysis. Disease-specific support vector machine radiologic-radiomic ML models for classification of renal masses were trained and validated using a 10-fold cross-validation. Performance values for the expert-level radiologists and radiologic-radiomic ML models were compared using the McNemar test. RESULTS. The performance values for the four radiologists were as follows: sensitivity of 73.7-96.8% (median, 84.5%; variance, 122.7%) and specificity of 48.4-71.9% (median, 61.8%; variance, 161.6%) for differentiating ccRCCs from pRCCs and chrRCCs; sensitivity of 73.7-96.8% (median, 84.5%; variance, 122.7%) and specificity of 52.8-88.9% for differentiating ccRCCs from fat-poor angioleiomyolipomas and oncocytomas (median, 80.6%; variance, 269.1%); and sensitivity of 28.1-60.9% (median, 84.5%; variance, 122.7%) and specificity of 75.0-88.9% for differentiating pRCCs and chrRCCs from fat-poor angioleiomyolipomas and oncocytomas (median, 50.0%; variance, 191.1%). After a 10-fold cross-validation, the radiologic-radiomic ML model yielded the following performance values for differentiating ccRCCs from pRCCs and chrRCCs, ccRCCs from fat-poor angioleiomyolipomas and oncocytomas, and pRCCs and chrRCCs from fat-poor angioleiomyolipomas and oncocytomas: a sensitivity of 90.0%, 86.3%, and 73.4% and a specificity of 89.1%, 83.3%, and 91.7%, respectively. CONCLUSION. Expert-level radiologists had obviously large variances in performance for differentiating benign from malignant solid renal masses. Radiologic-radiomic ML can be a potential way to improve interreader concordance and performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
桐桐应助zzzzzz采纳,获得10
10秒前
研友_VZG7GZ应助口口采纳,获得10
29秒前
40秒前
Takahara2000应助单薄水星采纳,获得10
42秒前
口口发布了新的文献求助10
46秒前
1分钟前
杨惠子发布了新的文献求助10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
郭星星完成签到,获得积分10
1分钟前
1分钟前
杨惠子完成签到,获得积分10
1分钟前
Echoheart完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
tdtk发布了新的文献求助10
2分钟前
tdtk发布了新的文献求助10
3分钟前
浮游应助tdtk采纳,获得10
3分钟前
3分钟前
FashionBoy应助tdtk采纳,获得10
3分钟前
浮游应助tdtk采纳,获得10
3分钟前
浮游应助tdtk采纳,获得10
3分钟前
3分钟前
XD发布了新的文献求助10
3分钟前
XD完成签到,获得积分10
4分钟前
4分钟前
ZHANG完成签到 ,获得积分10
4分钟前
sci2025opt完成签到 ,获得积分10
4分钟前
情怀应助tdtk采纳,获得10
4分钟前
Fairy完成签到,获得积分10
4分钟前
5分钟前
喜滋滋发布了新的文献求助10
5分钟前
tdtk发布了新的文献求助10
5分钟前
5分钟前
通科研完成签到 ,获得积分0
5分钟前
tdtk发布了新的文献求助10
6分钟前
6分钟前
十三发布了新的文献求助10
6分钟前
tdtk发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4870098
求助须知:如何正确求助?哪些是违规求助? 4160768
关于积分的说明 12902140
捐赠科研通 3915859
什么是DOI,文献DOI怎么找? 2150566
邀请新用户注册赠送积分活动 1168923
关于科研通互助平台的介绍 1072103