Fracture of the Intermolecular Hydrogen Bond Network Structure of Glycerol Modified by Carbon Nanotubes

分子间力 碳纳米管 氢键 粘度 拉曼光谱 材料科学 分子 化学工程 化学 化学物理 有机化学 纳米技术 复合材料 光学 物理 工程类
作者
Yanchao Yin,Liran Ma,Shizhu Wen,Jianbin Luo
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:122 (34): 19931-19936 被引量:19
标识
DOI:10.1021/acs.jpcc.8b04941
摘要

An intermolecular hydrogen bond network structure is usually formed in the liquid state and affects physicochemical properties, such as melting point, boiling point, and viscosity. The intermolecular hydrogen bond network structure plays an important role in the viscosity of lubricating oil; that is, the broken bond decreases the viscosity. To determine the effect of intermolecular hydrogen bond network structure on viscosity, this study used glycerol, which contains a large amount of intermolecular hydrogen bonds, as a research object. Single- and double-walled carbon nanotubes (SWNTs and DWNTs, respectively) were used as modifiers. The glycerol mixture and the carbon nanotubes were characterized by rheology, Raman spectroscopy, transmission electron microscopy (TEM), 1H NMR, and computer modeling. Results showed that the carbon nanotube modified the intermolecular hydrogen bond network, leading to reduced glycerol viscosity. The two types of nanotubes exhibited varied effects on glycerol viscosity. The SWNTs and DWNTs decreased the viscosity by up to 2.97 and 1.81%, respectively. The Raman, 1H NMR, and TEM results indicated that the intermolecular hydrogen bond network structure was destructed because of the capillary action of the carbon nanotube. Computer simulation also showed that the carbon nanotube had space-limiting function, which could separate the new glycerol molecule clusters from one another to terminate hydrogen bonding in the body phase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GH发布了新的文献求助10
刚刚
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得30
2秒前
Hello应助科研通管家采纳,获得10
2秒前
ECUST应助科研通管家采纳,获得10
2秒前
ECUST应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
领导范儿应助甜甜世立采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
跳跃太清完成签到 ,获得积分10
4秒前
一色完成签到,获得积分10
5秒前
打工人发布了新的文献求助10
5秒前
冰魂应助健壮的幻嫣采纳,获得10
6秒前
6秒前
7秒前
日出发布了新的文献求助10
9秒前
111关闭了111文献求助
9秒前
尊敬怀薇发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
bkagyin应助垃圾的摆设采纳,获得30
12秒前
王文豪完成签到,获得积分10
12秒前
12秒前
SYLH应助日出采纳,获得10
13秒前
打打应助日出采纳,获得10
13秒前
13秒前
可爱的函函应助打工人采纳,获得10
13秒前
14秒前
Koi发布了新的文献求助10
14秒前
yurenlao完成签到,获得积分10
15秒前
16秒前
LIJIngcan发布了新的文献求助10
16秒前
香蕉觅云应助伊吹风子采纳,获得10
17秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871052
求助须知:如何正确求助?哪些是违规求助? 3413160
关于积分的说明 10683368
捐赠科研通 3137607
什么是DOI,文献DOI怎么找? 1731128
邀请新用户注册赠送积分活动 834579
科研通“疑难数据库(出版商)”最低求助积分说明 781223