Multi-view information fusion in mammograms: A comprehensive overview

计算机科学 乳腺摄影术 背景(考古学) 异常 乳腺癌 人工智能 模式识别(心理学) 医学 癌症 生物 精神科 内科学 古生物学
作者
Amira Jouirou,Abir Baâzaoui,Walid Barhoumi
出处
期刊:Information Fusion [Elsevier BV]
卷期号:52: 308-321 被引量:35
标识
DOI:10.1016/j.inffus.2019.05.001
摘要

In the framework of computer-aided diagnosis of breast cancer, many systems were designed for the detection, the classification and/or the content-based mammogram retrieval (CBMR); in order to serve as a second source of decision for the radiologists. Nevertheless, to improve the final decision-making, the concept of multi-view information fusion (MVIF) was recently introduced. Indeed, this concept has been successfully applied in the context of breast cancer, since screening mammography provides two views for each breast: MedioLateral-Oblique (MLO) and CranioCaudal (CC) views. As these two views are complementary, MVIF methods widely proved their effectiveness. In this paper, we review the main methods that have been proposed for MVIF in the context of the detection (abnormality vs. non abnormality), the classification (normal vs. benign vs. malignant) and the content-based retrieval of mammograms. In fact, we classified detection based on MVIF methods into two main sub-classes, including ipsilateral analysis and bilateral analysis. Besides, classification based on MVIF methods were regrouped into two sub-classes, namely classification of breast masses based on MVIF and classification of breast microcalcifications based on MVIF. Lastly, CBMR based on MVIF methods were also classified into two sub-classes: early fusion-based MVIF-CBMR and late fusion-based MVIF-CBMR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南风发布了新的文献求助20
1秒前
所所应助天天开心采纳,获得10
1秒前
1秒前
mmnn发布了新的文献求助10
2秒前
CipherSage应助CDY采纳,获得10
2秒前
勤劳寒烟发布了新的文献求助10
2秒前
2秒前
LLL关闭了LLL文献求助
2秒前
婷婷完成签到,获得积分10
3秒前
4秒前
ypp发布了新的文献求助10
4秒前
maomao发布了新的文献求助10
5秒前
听雨眠发布了新的文献求助10
5秒前
JamesPei应助swjs08采纳,获得10
6秒前
汉堡包应助phenory采纳,获得10
6秒前
6秒前
6秒前
yx完成签到,获得积分10
6秒前
深情安青应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
Duan应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
若雨凌风应助科研通管家采纳,获得20
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
8秒前
乐乐应助stacy采纳,获得10
9秒前
9秒前
CipherSage应助HH采纳,获得10
9秒前
10秒前
yx发布了新的文献求助10
10秒前
10秒前
11秒前
摩登灰太狼完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
杏林靴子发布了新的文献求助10
13秒前
ASH完成签到 ,获得积分10
14秒前
14秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Astrochemistry 1000
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874243
求助须知:如何正确求助?哪些是违规求助? 3416514
关于积分的说明 10699571
捐赠科研通 3140728
什么是DOI,文献DOI怎么找? 1732975
邀请新用户注册赠送积分活动 835620
科研通“疑难数据库(出版商)”最低求助积分说明 782119