Integrative Analysis of Pathological Images and Multi-Dimensional Genomic Data for Early-Stage Cancer Prognosis

计算机科学 计算生物学 表观遗传学 生物 DNA甲基化 特征选择 人工智能 癌症 生物信息学 遗传学 基因 基因表达
作者
Wei Shao,Kun Huang,Zhi Han,Jun Cheng,Liang Cheng,Tongxin Wang,Liang Sun,Zixiao Lu,Jie Zhang,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (1): 99-110 被引量:80
标识
DOI:10.1109/tmi.2019.2920608
摘要

The integrative analysis of histopathological images and genomic data has received increasing attention for studying the complex mechanisms of driving cancers. However, most image-genomic studies have been restricted to combining histopathological images with the single modality of genomic data (e.g., mRNA transcription or genetic mutation), and thus neglect the fact that the molecular architecture of cancer is manifested at multiple levels, including genetic, epigenetic, transcriptional, and post-transcriptional events. To address this issue, we propose a novel ordinal multi-modal feature selection (OMMFS) framework that can simultaneously identify important features from both pathological images and multi-modal genomic data (i.e., mRNA transcription, copy number variation, and DNA methylation data) for the prognosis of cancer patients. Our model is based on a generalized sparse canonical correlation analysis framework, by which we also take advantage of the ordinal survival information among different patients for survival outcome prediction. We evaluate our method on three early-stage cancer datasets derived from The Cancer Genome Atlas (TCGA) project, and the experimental results demonstrated that both the selected image and multi-modal genomic markers are strongly correlated with survival enabling effective stratification of patients with distinct survival than the comparing methods, which is often difficult for early-stage cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘻嘻哈哈完成签到,获得积分10
刚刚
小乐完成签到 ,获得积分10
1秒前
123发布了新的文献求助10
1秒前
关江宇完成签到,获得积分10
2秒前
脑洞疼应助qiqi采纳,获得10
2秒前
李健应助精明代灵采纳,获得10
2秒前
2秒前
难过的翠霜完成签到 ,获得积分10
3秒前
hehehe完成签到,获得积分10
3秒前
jindui完成签到,获得积分10
3秒前
星辰大海应助guo采纳,获得10
4秒前
4秒前
Akim应助1234采纳,获得10
5秒前
郭志倩完成签到,获得积分10
5秒前
5秒前
张朵朵发布了新的文献求助10
5秒前
5秒前
6秒前
Tree_QD发布了新的文献求助10
7秒前
儒雅的天川给kelite的求助进行了留言
7秒前
乐乐应助美满的亦竹采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
W1完成签到,获得积分10
8秒前
奶姬发布了新的文献求助10
8秒前
李李完成签到,获得积分10
9秒前
9秒前
1234完成签到,获得积分10
10秒前
10秒前
11秒前
orixero应助美式采纳,获得10
11秒前
yx发布了新的文献求助10
11秒前
大模型应助搞搞科研采纳,获得10
11秒前
Distance完成签到,获得积分10
12秒前
guo完成签到,获得积分10
12秒前
秃瓢发布了新的文献求助10
12秒前
不配.应助董惠玲66采纳,获得30
13秒前
顾矜应助123采纳,获得10
14秒前
15秒前
Distance发布了新的文献求助10
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4233414
求助须知:如何正确求助?哪些是违规求助? 3766876
关于积分的说明 11835344
捐赠科研通 3425198
什么是DOI,文献DOI怎么找? 1879742
邀请新用户注册赠送积分活动 932497
科研通“疑难数据库(出版商)”最低求助积分说明 839688