Hyperspectral Images Denoising via Nonconvex Regularized Low-Rank and Sparse Matrix Decomposition

高光谱成像 降噪 矩阵分解 模式识别(心理学) 人工智能 稀疏矩阵 图像去噪 计算机科学 稀疏逼近 分解 计算机视觉 数学 图像处理 图像(数学) 生态学 特征向量 物理 量子力学 生物 高斯分布
作者
Ting Xie,Shutao Li,Bin Sun
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 44-56 被引量:79
标识
DOI:10.1109/tip.2019.2926736
摘要

Hyperspectral images (HSIs) are often degraded by a mixture of various types of noise during the imaging process, including Gaussian noise, impulse noise, and stripes. Such complex noise could plague the subsequent HSIs processing. Generally, most HSI denoising methods formulate sparsity optimization problems with convex norm constraints, which over-penalize large entries of vectors, and may result in a biased solution. In this paper, a nonconvex regularized low-rank and sparse matrix decomposition (NonRLRS) method is proposed for HSI denoising, which can simultaneously remove the Gaussian noise, impulse noise, dead lines, and stripes. The NonRLRS aims to decompose the degraded HSI, expressed in a matrix form, into low-rank and sparse components with a robust formulation. To enhance the sparsity in both the intrinsic low-rank structure and the sparse corruptions, a novel nonconvex regularizer named as normalized ε-penalty, is presented, which can adaptively shrink each entry. In addition, an effective algorithm based on the majorization minimization (MM) is developed to solve the resulting nonconvex optimization problem. Specifically, the MM algorithm first substitutes the nonconvex objective function with the surrogate upper-bound in each iteration, and then minimizes the constructed surrogate function, which enables the nonconvex problem to be solved in the framework of reweighted technique. Experimental results on both simulated and real data demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
常大有完成签到,获得积分10
刚刚
feitian201861完成签到,获得积分10
刚刚
1秒前
1秒前
忆年慧逝完成签到,获得积分10
1秒前
BenLuo完成签到,获得积分10
1秒前
hjs完成签到,获得积分10
2秒前
含蓄的明雪完成签到,获得积分10
2秒前
过昭关完成签到,获得积分10
2秒前
徐旺仔完成签到,获得积分10
2秒前
斯寜应助CC采纳,获得10
2秒前
哈哈完成签到,获得积分20
3秒前
lc完成签到,获得积分10
3秒前
4秒前
单纯访枫完成签到 ,获得积分10
4秒前
4秒前
在水一方应助子铭采纳,获得10
4秒前
Lucas应助冰雪物语采纳,获得10
4秒前
5秒前
轩辕一笑完成签到,获得积分10
5秒前
乐鱼完成签到,获得积分10
5秒前
5秒前
Tian完成签到 ,获得积分10
6秒前
荔枝汁儿发布了新的文献求助30
7秒前
怕黑的班完成签到,获得积分10
8秒前
kangkangkyt完成签到,获得积分10
8秒前
研友_Lpawrn发布了新的文献求助10
9秒前
march_s发布了新的文献求助10
9秒前
9秒前
绿大暗完成签到,获得积分10
10秒前
10秒前
10秒前
mufcyang完成签到,获得积分10
10秒前
11秒前
霸气咖啡豆完成签到,获得积分10
12秒前
自信安荷完成签到,获得积分10
12秒前
呦呦呵呵完成签到,获得积分10
12秒前
Kumiko完成签到,获得积分10
12秒前
liyuxuan发布了新的文献求助10
12秒前
hujialiang完成签到,获得积分10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808198
求助须知:如何正确求助?哪些是违规求助? 3352921
关于积分的说明 10361382
捐赠科研通 3068951
什么是DOI,文献DOI怎么找? 1685330
邀请新用户注册赠送积分活动 810433
科研通“疑难数据库(出版商)”最低求助积分说明 766150