计算机科学
基线(sea)
词(群论)
编码器
失真(音乐)
编码(集合论)
人工智能
模式识别(心理学)
简单
图层(电子)
差异(会计)
简单(哲学)
方向(向量空间)
自然语言处理
数学
程序设计语言
放大器
几何学
计算机网络
带宽(计算)
海洋学
会计
化学
有机化学
集合(抽象数据类型)
认识论
操作系统
业务
哲学
地质学
作者
Hui Li,Peng Wang,Chunhua Shen,Guyu Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence
[Association for the Advancement of Artificial Intelligence (AAAI)]
日期:2019-07-17
卷期号:33 (01): 8610-8617
被引量:392
标识
DOI:10.1609/aaai.v33i01.33018610
摘要
Recognizing irregular text in natural scene images is challenging due to the large variance in text appearance, such as curvature, orientation and distortion. Most existing approaches rely heavily on sophisticated model designs and/or extra fine-grained annotations, which, to some extent, increase the difficulty in algorithm implementation and data collection. In this work, we propose an easy-to-implement strong baseline for irregular scene text recognition, using offthe-shelf neural network components and only word-level annotations. It is composed of a 31-layer ResNet, an LSTMbased encoder-decoder framework and a 2-dimensional attention module. Despite its simplicity, the proposed method is robust. It achieves state-of-the-art performance on irregular text recognition benchmarks and comparable results on regular text datasets. The code will be released.
科研通智能强力驱动
Strongly Powered by AbleSci AI