布里渊区
凝聚态物理
赝势
声子
非谐性
内能
材料科学
格子(音乐)
六边形晶格
六方晶系
物理
结晶学
量子力学
化学
声学
反铁磁性
作者
Renata M. Wentzcovitch,Marvin L. Cohen
出处
期刊:Physical review
日期:1988-04-01
卷期号:37 (10): 5571-5576
被引量:75
标识
DOI:10.1103/physrevb.37.5571
摘要
Using a first-principles total-energy pseudopotential method, we investigate the transition mechanism for a pressure-induced martensitic transformation hcp\ensuremath{\rightarrow}bcc which occurs in Mg at pressures around 50 GPa. Two internal structural degrees of freedom are selected and one lattice is transformed into the other by relaxing these two parameters continuously. One of the parameters characterizes the relative displacement of the hexagonal layers and corresponds to a transverse phonon at the Brillouin-zone edge A in the hexagonal structure. The other characterizes the distortion of the internal hexagonal angles and corresponds to uniform strain along one of the [0010${]}_{\mathrm{hcp}}$ directions. The interaction between these two distortion modes causes important anharmonic effects in the zone-edge phonon and provides a low-energy path for the structural transition. The small activation barrier at the transition indicates that quantum fluctuations between the two structures could be taking place.
科研通智能强力驱动
Strongly Powered by AbleSci AI