Interpretation of ensemble learning to predict water quality using explainable artificial intelligence

均方误差 统计 方差膨胀系数 变量(数学) 特征选择 水质 数学 计算机科学 差异(会计) 机器学习 回归分析 生态学 会计 数学分析 业务 生物 多重共线性
作者
Jungsu Park,Woo Hyoung Lee,Keugtae Kim,Cheol Young Park,Sang‐Hun Lee,Tae‐Young Heo
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:832: 155070-155070 被引量:139
标识
DOI:10.1016/j.scitotenv.2022.155070
摘要

Algal bloom is a significant issue when managing water quality in freshwater; specifically, predicting the concentration of algae is essential to maintaining the safety of the drinking water supply system. The chlorophyll-a (Chl-a) concentration is a commonly used indicator to obtain an estimation of algal concentration. In this study, an XGBoost ensemble machine learning (ML) model was developed from eighteen input variables to predict Chl-a concentration. The composition and pretreatment of input variables to the model are important factors for improving model performance. Explainable artificial intelligence (XAI) is an emerging area of ML modeling that provides a reasonable interpretation of model performance. The effect of input variable selection on model performance was estimated, where the priority of input variable selection was determined using three indices: Shapley value (SHAP), feature importance (FI), and variance inflation factor (VIF). SHAP analysis is an XAI algorithm designed to compute the relative importance of input variables with consistency, providing an interpretable analysis for model prediction. The XGB models simulated with independent variables selected using three indices were evaluated with root mean square error (RMSE), RMSE-observation standard deviation ratio, and Nash-Sutcliffe efficiency. This study shows that the model exhibited the most stable performance when the priority of input variables was determined by SHAP. This implies that on-site monitoring can be designed to collect the selected input variables from the SHAP analysis to reduce the cost of overall water quality analysis. The independent variables were further analyzed using SHAP summary plot, force plot, target plot, and partial dependency plot to provide understandable interpretation on the performance of the XGB model. While XAI is still in the early stages of development, this study successfully demonstrated a good example of XAI application to improve the interpretation of machine learning model performance in predicting water quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土豆子汁完成签到,获得积分10
刚刚
1秒前
Jasper应助ritalin采纳,获得10
1秒前
1秒前
2秒前
李爱国应助每天都在做梦采纳,获得10
3秒前
windli发布了新的文献求助10
4秒前
4秒前
大个应助Lorain采纳,获得10
6秒前
6秒前
6秒前
7秒前
王大帅完成签到,获得积分10
8秒前
8秒前
grh发布了新的文献求助10
8秒前
kangsynat发布了新的文献求助10
8秒前
10秒前
10秒前
10秒前
yelide发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
猪猪hero应助高兴夜香采纳,获得20
15秒前
@金发布了新的文献求助10
15秒前
流白应助探险家采纳,获得10
16秒前
柯北完成签到,获得积分20
16秒前
小蘑菇应助顺利的傲之采纳,获得10
16秒前
我是老大应助newgeno2003采纳,获得20
17秒前
17秒前
jack发布了新的文献求助10
18秒前
zyqi完成签到 ,获得积分10
19秒前
19秒前
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
20秒前
orixero应助科研通管家采纳,获得10
20秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794290
求助须知:如何正确求助?哪些是违规求助? 3339195
关于积分的说明 10294538
捐赠科研通 3055817
什么是DOI,文献DOI怎么找? 1676819
邀请新用户注册赠送积分活动 804770
科研通“疑难数据库(出版商)”最低求助积分说明 762149