Noninvasive monitoring of allograft rejection in a rat lung transplant model: Application of machine learning-based 18F-fluorodeoxyglucose positron emission tomography radiomics

正电子发射断层摄影术 核医学 医学 无线电技术 标准摄取值 置信区间 逻辑回归 接收机工作特性 随机森林 氟脱氧葡萄糖 机器学习 放射科 内科学 计算机科学
作者
Dong Tian,Haruhiko Shiiya,M. Takahashi,Yasuhiro Terasaki,Hirokazu Urushiyama,Aya Shinozaki‐Ushiku,Hao‐Ji Yan,Masaaki Sato,Jun Nakajima
出处
期刊:Journal of Heart and Lung Transplantation [Elsevier BV]
卷期号:41 (6): 722-731 被引量:7
标识
DOI:10.1016/j.healun.2022.03.010
摘要

Standardized uptake values (SUVs) derived from 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) are valuable but insufficient for detecting lung allograft rejection (AR). Using a rat lung transplantation (LTx) model, we investigated correlations of AR with the SUVmax and PET-derived radiomics and further evaluated the performance of machine learning (ML)-based radiomics for monitoring AR.LTx was performed on 4 groups of rats: isograft, allograft-cyclosporinecontinuous (CsAcont), allograft-CsAdelayed, and allograft-CsA1week. Each rat underwent 18F-FDG PET at week 3 or 6. The SUVmax and radiomic features were extracted from the PET images. Least absolute shrinkage and selection operator regression was used to construct a radiomics score (Rad-score). Ten modeling algorithms with 7 feature selection methods were performed to develop 70 radiomics models (49 ML models and 21 logistic regression models) for monitoring AR, validated using the bootstrap method.In total, 837 radiomic features were extracted from each PET image. The SUVmax and Rad-score showed significant positive correlations with histopathology (p < .05). The area under the curve (AUC) of SUVmax for detecting AR was 0.783. The median AUC of ML models was 0.921, which was superior to that of logistic regression models (median AUC, 0.721). The optimal ML model using a random forest modeling algorithm with random forest feature selection method exhibited the highest AUC of 0.982 (95% confidence interval, 0.875-1.000) in all models.SUVmax provided a good correlation with AR, but ML-based PET radiomics further strengthened the power of 18F-FDG PET functional imaging for monitoring AR in LTx.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dwalll发布了新的文献求助30
刚刚
忐忑的黑猫应助QR采纳,获得10
刚刚
儒雅的豁完成签到,获得积分10
1秒前
maclogos发布了新的文献求助10
2秒前
5秒前
XHX发布了新的文献求助10
6秒前
qwa完成签到 ,获得积分10
7秒前
9秒前
下一块蛋糕完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
王雪完成签到,获得积分10
12秒前
君无名完成签到 ,获得积分10
12秒前
tangchao完成签到,获得积分10
14秒前
Miracle完成签到,获得积分10
14秒前
害羞便当发布了新的文献求助10
15秒前
xlh发布了新的文献求助10
15秒前
简单平蓝发布了新的文献求助10
16秒前
葵花杜甫发布了新的文献求助10
17秒前
展七完成签到,获得积分10
17秒前
18秒前
20秒前
21秒前
三毛完成签到,获得积分10
22秒前
半壶月色半边天完成签到 ,获得积分10
22秒前
zhying55发布了新的文献求助10
24秒前
25秒前
不会科研的研0完成签到 ,获得积分10
28秒前
马保国123完成签到,获得积分10
28秒前
丘比特应助kkk采纳,获得10
29秒前
31秒前
31秒前
xlh完成签到,获得积分10
32秒前
所所应助maclogos采纳,获得10
33秒前
33秒前
一张纸完成签到,获得积分10
34秒前
Tsai完成签到,获得积分10
35秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323664
关于积分的说明 10215380
捐赠科研通 3038867
什么是DOI,文献DOI怎么找? 1667677
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339