Noninvasive monitoring of allograft rejection in a rat lung transplant model: Application of machine learning-based 18F-fluorodeoxyglucose positron emission tomography radiomics

正电子发射断层摄影术 核医学 医学 无线电技术 标准摄取值 置信区间 逻辑回归 接收机工作特性 随机森林 氟脱氧葡萄糖 机器学习 放射科 内科学 计算机科学
作者
Dong Tian,Haruhiko Shiiya,M. Takahashi,Yasuhiro Terasaki,Hirokazu Urushiyama,Aya Shinozaki‐Ushiku,Hao‐Ji Yan,Masaaki Sato,Jun Nakajima
出处
期刊:Journal of Heart and Lung Transplantation [Elsevier BV]
卷期号:41 (6): 722-731 被引量:7
标识
DOI:10.1016/j.healun.2022.03.010
摘要

Standardized uptake values (SUVs) derived from 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) are valuable but insufficient for detecting lung allograft rejection (AR). Using a rat lung transplantation (LTx) model, we investigated correlations of AR with the SUVmax and PET-derived radiomics and further evaluated the performance of machine learning (ML)-based radiomics for monitoring AR.LTx was performed on 4 groups of rats: isograft, allograft-cyclosporinecontinuous (CsAcont), allograft-CsAdelayed, and allograft-CsA1week. Each rat underwent 18F-FDG PET at week 3 or 6. The SUVmax and radiomic features were extracted from the PET images. Least absolute shrinkage and selection operator regression was used to construct a radiomics score (Rad-score). Ten modeling algorithms with 7 feature selection methods were performed to develop 70 radiomics models (49 ML models and 21 logistic regression models) for monitoring AR, validated using the bootstrap method.In total, 837 radiomic features were extracted from each PET image. The SUVmax and Rad-score showed significant positive correlations with histopathology (p < .05). The area under the curve (AUC) of SUVmax for detecting AR was 0.783. The median AUC of ML models was 0.921, which was superior to that of logistic regression models (median AUC, 0.721). The optimal ML model using a random forest modeling algorithm with random forest feature selection method exhibited the highest AUC of 0.982 (95% confidence interval, 0.875-1.000) in all models.SUVmax provided a good correlation with AR, but ML-based PET radiomics further strengthened the power of 18F-FDG PET functional imaging for monitoring AR in LTx.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
田様应助云轰2857采纳,获得10
3秒前
花h发布了新的文献求助10
3秒前
十一发布了新的文献求助10
3秒前
科研通AI6应助成就老虎采纳,获得10
5秒前
5秒前
申梦兵发布了新的文献求助10
6秒前
李爱国应助CCyaly采纳,获得10
6秒前
dr_maxiaohua发布了新的文献求助10
7秒前
情怀应助henanwht采纳,获得10
8秒前
阳子关注了科研通微信公众号
9秒前
10秒前
11秒前
12秒前
爆米花应助lmmorz采纳,获得10
13秒前
糯米饭完成签到 ,获得积分10
13秒前
SuperYM发布了新的文献求助20
13秒前
lijunhao完成签到,获得积分10
14秒前
15秒前
19秒前
美丽秋蝶发布了新的文献求助10
20秒前
21秒前
李健的粉丝团团长应助Away采纳,获得10
22秒前
锁模完成签到 ,获得积分10
23秒前
25秒前
科研通AI2S应助andrele采纳,获得10
25秒前
不想干活应助犹豫的初丹采纳,获得10
25秒前
梅梅美美完成签到,获得积分10
26秒前
28秒前
8R60d8应助结实白柏采纳,获得10
28秒前
英勇明雪发布了新的文献求助10
30秒前
共享精神应助搞笑羽球人采纳,获得10
31秒前
不想干活应助oleskarabach采纳,获得10
31秒前
CR7应助oleskarabach采纳,获得10
31秒前
Owen应助crack采纳,获得10
32秒前
YAO完成签到 ,获得积分10
32秒前
33秒前
快乐紫青完成签到 ,获得积分10
33秒前
朴实的晓筠完成签到,获得积分10
34秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4525986
求助须知:如何正确求助?哪些是违规求助? 3965954
关于积分的说明 12291499
捐赠科研通 3630428
什么是DOI,文献DOI怎么找? 1997955
邀请新用户注册赠送积分活动 1034310
科研通“疑难数据库(出版商)”最低求助积分说明 923892