材料科学
电极
电化学
锂(药物)
锂离子电池
中尺度气象学
聚类分析
电池(电)
石墨
粒子(生态学)
各向同性
各向异性
离子
纳米技术
复合材料
计算机科学
热力学
气象学
功率(物理)
物理化学
机器学习
地质学
内分泌学
海洋学
物理
化学
医学
量子力学
作者
Mukul Parmananda,Chance Norris,Scott Alan Roberts,Partha P. Mukherjee
标识
DOI:10.1021/acsami.1c25214
摘要
Electrode-scale heterogeneity can combine with complex electrochemical interactions to impede lithium-ion battery performance, particularly during fast charging. This study investigates the influence of electrode heterogeneity at different scales on the lithium-ion battery electrochemical performance under operational extremes. We employ image-based mesoscale simulation in conjunction with a three-dimensional electrochemical model to predict performance variability in 14 graphite electrode X-ray computed tomography data sets. Our analysis reveals that the tortuous anisotropy stemming from the variable particle morphology has a dominating influence on the overall cell performance. Cells with platelet morphology achieve lower capacity, higher heat generation rates, and severe plating under extreme fast charge conditions. On the contrary, the heterogeneity due to the active material clustering alone has minimal impact. Our work suggests that manufacturing electrodes with more homogeneous and isotropic particle morphology will improve electrochemical performance and improve safety, enabling electromobility.
科研通智能强力驱动
Strongly Powered by AbleSci AI