Bioinspired design of highly sensitive flexible tactile sensors for wearable healthcare monitoring

材料科学 触觉传感器 可穿戴计算机 电容感应 电子皮肤 纳米技术 电容 可穿戴技术 电极 压力传感器 小型化 光电子学 微尺度化学 计算机科学 嵌入式系统 机械工程 人工智能 机器人 操作系统 工程类 数学教育 物理化学 化学 数学
作者
J. Chen,L. Li,Zheng Zhu,Zhixun Luo,Wei Tang,L. Wang,Haoyan Li
出处
期刊:Materials Today Chemistry [Elsevier BV]
卷期号:23: 100718-100718 被引量:60
标识
DOI:10.1016/j.mtchem.2021.100718
摘要

The design of microscale architectures integrated with low-dimensional nanomaterials for tactile sensors has attracted considerable attention owing to their high performance for various potential applications, especially in the field of healthcare monitoring. However, there still remains a critical challenge to achieve high sensitivity in response to different magnitude external pressure. Herein, we introduce a high performance capacitive tactile sensor based on Silver nanowires coated biomimetic hierarchical array architecture, which consists of mini-domes by the way of vacuum adsorption from through-hole arrays and micro-cones by duplicating Calathea zebrina leaf, respectively. This hybrid graded microstructure as electrode exhibits remarkably improved sensitivity and stimulus responding range when compared with the other monotonous counterparts. Moreover, an optimized ionic gel film with remarkable interfacial capacitance is sandwiched by microstructured electrodes as the dielectric layer, further boosting the performance of the tactile sensor. As a result, the obtained sensor demonstrates a board detection range from 24 Pa to 90 kPa with a maximum sensitivity of 37.8 kPa−1, and a fast response time (<78 ms). These superior performances of our tactile sensor lay a foundation for various applications in healthcare monitoring. It can not only sense and distinguish subtle arterial pulse signals even under different ages, genders and states of motion but also monitor physiological activity with large pressure as well, such as breathing, plantar pressure, and so on. We envision this bionic tactile sensor holds great potential in wearable electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
hyp7347发布了新的文献求助10
3秒前
kkkkkk完成签到,获得积分10
5秒前
6秒前
6秒前
orixero应助ma采纳,获得10
7秒前
是谁还没睡完成签到 ,获得积分10
9秒前
11秒前
ma完成签到,获得积分10
13秒前
16秒前
yliaoyou完成签到,获得积分10
18秒前
温暖的涵易应助NN采纳,获得30
21秒前
黄辉冯完成签到,获得积分10
24秒前
脑洞疼应助wlei采纳,获得10
25秒前
gambling完成签到 ,获得积分20
26秒前
scm完成签到,获得积分10
30秒前
科研通AI5应助小纯牛奶采纳,获得10
31秒前
热心市民完成签到,获得积分0
31秒前
Wudifairy完成签到,获得积分10
31秒前
33秒前
吃紫薯的鱼完成签到,获得积分10
35秒前
37秒前
YOY发布了新的文献求助10
37秒前
711moiii完成签到,获得积分10
37秒前
38秒前
隐形曼青应助黄石采纳,获得10
40秒前
陈JY完成签到 ,获得积分10
40秒前
科研通AI5应助ljs采纳,获得10
41秒前
HEAUBOOK应助峡星牙采纳,获得30
41秒前
啊啊啊发布了新的文献求助10
41秒前
wlei发布了新的文献求助10
43秒前
43秒前
芦荟板蓝根完成签到,获得积分10
48秒前
48秒前
49秒前
Holly完成签到,获得积分10
50秒前
阳光的初瑶完成签到,获得积分20
54秒前
Ling完成签到,获得积分10
55秒前
56秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799165
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321911
捐赠科研通 3061287
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445