An Objective, Information-Based Approach for Selecting the Number of Muscle Synergies to be Extracted via Non-Negative Matrix Factorization

作者
Simone Ranaldi,Cristiano De Marchis,Giacomo Severini,Silvia Conforto
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:29: 2676-2683 被引量:27
标识
DOI:10.1109/tnsre.2021.3134763
摘要

Muscle synergy analysis is a useful tool for the evaluation of the motor control strategies and for the quantification of motor performance. Among the parameters that can be extracted, most of the information is included in the rank of the modular control model (i.e. the number of muscle synergies that can be used to describe the overall muscle coordination). Even though different criteria have been proposed in literature, an objective criterion for the model order selection is needed to improve reliability and repeatability of MSA results. In this paper, we propose an Akaike Information Criterion (AIC)-based method for model order selection when extracting muscle synergies via the original Gaussian Non-Negative Matrix Factorization algorithm. The traditional AIC definition has been modified based on a correction of the likelihood term, which includes signal dependent noise on the neural commands, and a Discrete Wavelet decomposition method for the proper estimation of the number of degrees of freedom of the model, reduced on a synergy-by-synergy and event-by-event basis. We tested the performance of our method in comparison with the most widespread ones, proving that our criterion is able to yield good and stable performance in selecting the correct model order in simulated EMG data. We further evaluated the performance of our AIC-based technique on two distinct experimental datasets confirming the results obtained with the synthetic signals, with performances that are stable and independent from the nature of the analysed task, from the signal quality and from the subjective EMG pre-processing steps.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搞怪柔完成签到,获得积分10
刚刚
无花果应助lnan采纳,获得10
1秒前
湖蓝色完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
汉堡包应助椰子采纳,获得10
3秒前
肖旻发布了新的文献求助10
3秒前
深情安青应助阳6采纳,获得10
3秒前
湖蓝色发布了新的文献求助10
5秒前
kento发布了新的文献求助30
7秒前
bcl完成签到,获得积分10
7秒前
8秒前
HOAN应助奇异果采纳,获得50
8秒前
晓磊发布了新的文献求助30
9秒前
善学以致用应助Tsd采纳,获得10
11秒前
等待薯片完成签到,获得积分20
12秒前
椰子发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
15秒前
打打应助1526918042采纳,获得10
16秒前
16秒前
16秒前
17秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
邓佳鑫Alan应助龙龙采纳,获得10
20秒前
XLL小绿绿发布了新的文献求助10
21秒前
0001发布了新的文献求助10
21秒前
22秒前
戏子完成签到,获得积分10
22秒前
liuttinn完成签到,获得积分10
23秒前
今后应助宝玉采纳,获得10
23秒前
慕青应助宝玉采纳,获得10
23秒前
平常心完成签到 ,获得积分10
24秒前
drama_queen发布了新的文献求助10
24秒前
晨曦完成签到 ,获得积分10
26秒前
怡然发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770522
求助须知:如何正确求助?哪些是违规求助? 5585594
关于积分的说明 15424400
捐赠科研通 4904070
什么是DOI,文献DOI怎么找? 2638501
邀请新用户注册赠送积分活动 1586366
关于科研通互助平台的介绍 1541437