Unsupervised Deep Learning for FOD-Based Susceptibility Distortion Correction in Diffusion MRI

人类连接体项目 人工智能 失真(音乐) 计算机科学 磁共振弥散成像 深度学习 部分各向异性 编码(内存) 计算机视觉 模式识别(心理学) 流离失所(心理学) 磁共振成像 医学 心理学 放大器 计算机网络 带宽(计算) 放射科 神经科学 功能连接 心理治疗师 生物
作者
Yuchuan Qiao,Yonggang Shi
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (5): 1165-1175 被引量:12
标识
DOI:10.1109/tmi.2021.3134496
摘要

Susceptibility induced distortion is a major artifact that affects the diffusion MRI (dMRI) data analysis. In the Human Connectome Project (HCP), the state-of-the-art method adopted to correct this kind of distortion is to exploit the displacement field from the B0 image in the reversed phase encoding images. However, both the traditional and learning-based approaches have limitations in achieving high correction accuracy in certain brain regions, such as brainstem. By utilizing the fiber orientation distribution (FOD) computed from the dMRI, we propose a novel deep learning framework named DistoRtion Correction Net (DrC-Net), which consists of the U-Net to capture the latent information from the 4D FOD images and the spatial transformer network to propagate the displacement field and back propagate the losses between the deformed FOD images. The experiments are performed on two datasets acquired with different phase encoding (PE) directions including the HCP and the Human Connectome Low Vision (HCLV) dataset. Compared to two traditional methods topup and FODReg and two deep learning methods S-Net and flow-net, the proposed method achieves significant improvements in terms of the mean squared difference (MSD) of fractional anisotropy (FA) images and minimum angular difference between two PEs in white matter and also brainstem regions. In the meantime, the proposed DrC-Net takes only several seconds to predict a displacement field, which is much faster than the FODReg method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助李亚宁采纳,获得10
1秒前
1秒前
小马甲应助向日葵采纳,获得10
1秒前
南淮一梦完成签到,获得积分10
1秒前
鱼鱼色发布了新的文献求助10
3秒前
3秒前
3秒前
大晨发布了新的文献求助10
3秒前
于sir发布了新的文献求助10
4秒前
Jasper应助杉杉采纳,获得10
4秒前
5秒前
5秒前
5秒前
5秒前
科研小民工应助我爱学习采纳,获得200
6秒前
6秒前
6秒前
Akim应助Leee采纳,获得10
7秒前
星辰大海应助秋风细细雨采纳,获得10
8秒前
激动的尔烟完成签到,获得积分10
8秒前
小二郎应助明理的紫南采纳,获得10
10秒前
悦悦完成签到,获得积分20
10秒前
10秒前
一念初见发布了新的文献求助10
10秒前
snowy_owl发布了新的文献求助10
11秒前
12秒前
小王同学发布了新的文献求助10
12秒前
赵磊发布了新的文献求助10
12秒前
科研通AI2S应助大晨采纳,获得10
13秒前
赘婿应助111采纳,获得10
13秒前
鱼鱼色完成签到,获得积分10
14秒前
14秒前
李亚宁发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
17秒前
17秒前
研友_奋斗的枫完成签到,获得积分10
17秒前
脑洞疼应助追寻的问玉采纳,获得10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793241
求助须知:如何正确求助?哪些是违规求助? 3337977
关于积分的说明 10288036
捐赠科研通 3054558
什么是DOI,文献DOI怎么找? 1676014
邀请新用户注册赠送积分活动 804038
科研通“疑难数据库(出版商)”最低求助积分说明 761715