作者
Min Li,Amjad Ali,Yifei Li,Junfeng Su,Shuai Zhang
摘要
A bacterium Ochrobactrum sp. GMC12, capable of biomineralization and denitrification, was employed to investigate the performance and mechanism of heavy metals removal. A chia seeds (Salvia hispanica) gum was proposed as a synergist for the first time. The results showed that strain GMC12 reduced Ca2+, Cd2+, Zn2+, and nitrate by 83.38, 98.89, 98.95, and 100% (2.09, 0.29, 0.55, and 0.79 mg L-1 h-1), respectively, over 96 h continuous determination experiments. The concentration gradient test revealed that strain GMC12 would effectively remove Cd2+ and Zn2+ by 99.80 and 99.91% (0.67 and 1.35 mg L-1 h-1), respectively, under the synergistic effect of gum (1.0%, w/v). The SEM-EDS and XRD manifested that Ca2+, HMs ions, and anionic groups coated on the bacteria surface to form CaCO3, Ca5(PO4)3OH, CdCO3, Cd5(PO4)3OH, ZnCO3, and Zn2(PO4)OH. The fluorescence spectrometry and fourier transform infrared (FTIR) spectra illustrated that extracellular polymeric substance (EPS) was the key product for the nucleation site of bacteria, and the gum promoted the accumulation of bio-precipitates and accelerated the removal of HMs. In this research, Ochrobactrum sp. GMC12 exhibited great potential in wastewater treatment and chia seeds gum would go deep into material preparation and wastewater treatment due to its non-toxic nature, high viscosity, and advantageous morphology.