亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Approximated Gradient Sign Method Using Differential Evolution for Black-Box Adversarial Attack

黑匣子 差异进化 像素 计算机科学 对抗制 算法 数学优化 人工智能 最优化问题 人工神经网络 数学
作者
Chao Li,Handing Wang,Jun Zhang,Wen Yao,Tingsong Jiang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:26 (5): 976-990 被引量:43
标识
DOI:10.1109/tevc.2022.3151373
摘要

Recent studies show that deep neural networks are vulnerable to adversarial attacks in the form of subtle perturbations to the input image, which leads the model to output wrong prediction. Such an attack can easily succeed by the existing white-box attack methods, where the perturbation is calculated based on the gradient of the target network. Unfortunately, the gradient is often unavailable in the real-world scenarios, which makes the black-box adversarial attack problems practical and challenging. In fact, they can be formulated as high-dimensional black-box optimization problems at the pixel level. Although evolutionary algorithms are well known for solving black-box optimization problems, they cannot efficiently deal with the high-dimensional decision space. Therefore, we propose an approximated gradient sign method using differential evolution (DE) for solving black-box adversarial attack problems. Unlike most existing methods, it is novel that the proposed method searches the gradient sign rather than the perturbation by a DE algorithm. Also, we transform the pixel-based decision space into a dimension-reduced decision space by combining the pixel differences from the input image to neighbor images, and two different techniques for selecting neighbor images are introduced to build the transferred decision space. In addition, six variants of the proposed method are designed according to the different neighborhood selection and optimization search strategies. Finally, the performance of the proposed method is compared with a number of the state-of-the-art adversarial attack algorithms on CIFAR-10 and ImageNet datasets. The experimental results suggest that the proposed method shows superior performance for solving black-box adversarial attack problems, especially nontargeted attack problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
45秒前
David Zhang发布了新的文献求助10
50秒前
bc应助美满冬天采纳,获得30
56秒前
FashionBoy应助饼干采纳,获得10
1分钟前
1分钟前
嘒彼小星发布了新的文献求助20
1分钟前
2分钟前
bc举报微不足道求助涉嫌违规
2分钟前
3分钟前
学术混子完成签到,获得积分10
3分钟前
bc举报Gummybear求助涉嫌违规
4分钟前
4分钟前
Owen应助小人物采纳,获得20
4分钟前
国色不染尘完成签到,获得积分10
4分钟前
4分钟前
饼干发布了新的文献求助10
4分钟前
饼干完成签到,获得积分20
4分钟前
5分钟前
传奇3应助LYL采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
彭于晏应助11采纳,获得10
5分钟前
6分钟前
11发布了新的文献求助10
6分钟前
bkagyin应助科研通管家采纳,获得10
6分钟前
老石完成签到 ,获得积分10
6分钟前
6分钟前
称心如意完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
LYL发布了新的文献求助10
7分钟前
桐桐应助11采纳,获得10
7分钟前
7分钟前
123完成签到,获得积分10
7分钟前
11发布了新的文献求助10
7分钟前
Denmark完成签到 ,获得积分10
7分钟前
8分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788267
求助须知:如何正确求助?哪些是违规求助? 3333714
关于积分的说明 10263197
捐赠科研通 3049588
什么是DOI,文献DOI怎么找? 1673634
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760511