XGBoost Regression of the Most Significant Photoplethysmogram Features for Assessing Vascular Aging

光容积图 均方误差 平均绝对误差 统计 特征(语言学) 相关系数 数学 决定系数 线性回归 医学 人工智能 心脏病学 计算机科学 电信 哲学 无线 语言学
作者
Hang‐Sik Shin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (7): 3354-3361 被引量:48
标识
DOI:10.1109/jbhi.2022.3151091
摘要

The purpose of this study was to confirm the potential of XGBoost as a vascular aging assessment model based on the photoplethysmogram (PPG) features suggested in previous studies, and to explore the key PPG features for vascular aging assessment through an explainable artificial intelligence method. The PPG waveforms obtained from 752 volunteers aged 19–87 years were analyzed and a total of 78 features were derived that were proposed in previous studies. Age was estimated through an XGBoost regression model, and estimation error was calculated in terms of mean absolute error and root-mean-squared error. To evaluate feature importance, gain, coverage, weight, and SHAP value was calculated. The vascular aging assessment model developed using XGBoost has 8.1 years of mean-absolute error and 9.9 years of root-mean-squared error, a correlation coefficient of 0.63 with actual age, and a coefficient of determination of 0.39. Feature importance analysis using the SHAP value confirmed that features, such as systolic and diastolic peak amplitude, risetime, skewness, and pulse area, play a key role in vascular aging assessment. The XGBoost regression model showed an equal level of performance to the existing PPG-based vascular aging assessment models. Moreover, the result of feature importance analysis using explainable artificial intelligence verified that the features proposed in previous vascular aging assessment studies, such as reflective index and risetime, were more important in vascular aging assessment than other PPG features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到,获得积分10
刚刚
2秒前
雷霆康康完成签到,获得积分10
3秒前
背后归尘完成签到,获得积分10
3秒前
4秒前
liman完成签到,获得积分10
4秒前
马香芦完成签到,获得积分10
4秒前
Akim应助Dravia采纳,获得10
4秒前
maox1aoxin应助lv采纳,获得30
5秒前
慕青应助踏实小蘑菇采纳,获得10
5秒前
科研通AI2S应助lerrygg采纳,获得20
6秒前
行舟完成签到 ,获得积分10
8秒前
deer完成签到,获得积分10
9秒前
xtt完成签到,获得积分10
10秒前
11秒前
于是完成签到,获得积分10
11秒前
我是老大应助pj采纳,获得10
12秒前
15秒前
李健应助大气的画板采纳,获得10
15秒前
15秒前
受伤问凝完成签到 ,获得积分10
15秒前
LDB发布了新的文献求助10
16秒前
zhang狗子完成签到,获得积分10
17秒前
Lin应助球球采纳,获得10
19秒前
19秒前
钱念波发布了新的文献求助10
19秒前
zhang狗子发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
22秒前
23秒前
专注寻菱完成签到,获得积分10
23秒前
朱丁丁完成签到,获得积分10
25秒前
sinan发布了新的文献求助10
25秒前
25秒前
Dravia发布了新的文献求助10
26秒前
leoskrrr发布了新的文献求助10
28秒前
28秒前
飞翔鸟发布了新的文献求助10
29秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963841
求助须知:如何正确求助?哪些是违规求助? 3509723
关于积分的说明 11148644
捐赠科研通 3243530
什么是DOI,文献DOI怎么找? 1792128
邀请新用户注册赠送积分活动 873506
科研通“疑难数据库(出版商)”最低求助积分说明 803808